Publications by authors named "Raymond Tobler"

Background: Recent ancient DNA studies uncovering large-scale demographic events in Iberia have presented very limited data for Portugal, a country located at the westernmost edge of continental Eurasia. Here, we present the most comprehensive collection of Portuguese ancient genome-wide data, from 67 individuals spanning 5000 years of human history, from the Neolithic to the nineteenth century.

Results: We identify early admixture between local hunter-gatherers and Anatolian-related farmers in Neolithic Portugal, with a northeastern-southwestern gradient of increasing Magdalenian-associated ancestry persistence in Iberia.

View Article and Find Full Text PDF

Ongoing advances in population genomic methodologies have recently enabled the study of millions of loci across hundreds of genomes at a relatively low cost, by leveraging a combination of low-coverage shotgun sequencing and innovative genotype imputation methods. This approach has the potential to provide abundant genotype information at low costs comparable to another widely used cost-effective genotyping approach-that is, SNP panels-while avoiding potential issues related to loci being ascertained in distantly related populations. Nonetheless, the wide adoption of imputation methods in humans and other species is currently constrained by the lack of publicly available reference panels that capture diversity representative of the target genomes-though the recent development of 'joint' imputation approaches, which allow genetic information from the target population to be used in genotype calling, may potentially mitigate this shortcoming.

View Article and Find Full Text PDF

Background: In-solution hybridization enrichment of genetic markers is a method of choice in paleogenomic studies, where the DNA of interest is generally heavily fragmented and contaminated with environmental DNA, and where the retrieval of genetic data comparable between individuals is challenging. Here, we benchmark the commercial "Twist Ancient DNA" reagent from Twist Biosciences using sequencing libraries from ancient human samples of diverse demographic origin with low to high endogenous DNA content (0.1-44%).

View Article and Find Full Text PDF
Article Synopsis
  • The tropical region of Wallacea was first settled by modern humans around 50,000 years ago, with Austronesian seafarers arriving approximately 3,500 years ago.
  • Current populations in Wallacea show a mix of ancestries derived from both Papuan and Asian sources, suggesting interactions between local populations and Austronesian migrants, although much of the Papuan-related ancestry is traced back to migrations from New Guinea.
  • Recent genetic analysis, alongside archaeological and linguistic evidence, indicates that the population history of Wallacea has been significantly influenced by the movement of Papuan genes, languages, and cultures over the last 3,500 years.
View Article and Find Full Text PDF

Dingoes are culturally and ecologically important free-living canids whose ancestors arrived in Australia over 3,000 B.P., likely transported by seafaring people.

View Article and Find Full Text PDF

Population genetic simulation has emerged as a common tool for investigating increasingly complex evolutionary and demographic models. Software capable of handling high-level model complexity has recently been developed, and the advancement of tree sequence recording now allows simulations to merge the efficiency and genealogical insight of coalescent simulations with the flexibility of forward simulations. However, frameworks utilizing these features have not yet been compared and benchmarked.

View Article and Find Full Text PDF

In-solution hybridisation enrichment of genetic variation is a valuable methodology in human paleogenomics. It allows enrichment of endogenous DNA by targeting genetic markers that are comparable between sequencing libraries. Many studies have used the 1240k reagent-which enriches 1,237,207 genome-wide SNPs-since 2015, though access was restricted.

View Article and Find Full Text PDF

The evolutionarily recent dispersal of anatomically modern humans (AMH) out of Africa (OoA) and across Eurasia provides a unique opportunity to examine the impacts of genetic selection as humans adapted to multiple new environments. Analysis of ancient Eurasian genomic datasets (~1,000 to 45,000 y old) reveals signatures of strong selection, including at least 57 hard sweeps after the initial AMH movement OoA, which have been obscured in modern populations by extensive admixture during the Holocene. The spatiotemporal patterns of these hard sweeps provide a means to reconstruct early AMH population dispersals OoA.

View Article and Find Full Text PDF

Recent studies of cosmopolitan Drosophila populations have found hundreds to thousands of genetic loci with seasonally fluctuating allele frequencies, bringing temporally fluctuating selection to the forefront of the historical debate surrounding the maintenance of genetic variation in natural populations. Numerous mechanisms have been explored in this longstanding area of research, but these exciting empirical findings have prompted several recent theoretical and experimental studies that seek to better understand the drivers, dynamics, and genome-wide influence of fluctuating selection. In this review, we evaluate the latest evidence for multilocus fluctuating selection in Drosophila and other taxa, highlighting the role of potential genetic and ecological mechanisms in maintaining these loci and their impacts on neutral genetic variation.

View Article and Find Full Text PDF

Genomic sequence data from worldwide human populations have provided a range of novel insights into our shared ancestry and the historical migrations that have shaped our global genetic diversity. However, a comprehensive understanding of these fundamental questions has been impeded by the lack of inclusion of many Indigenous populations in genomic surveys, including those from the Wallacean archipelago (which comprises islands of present-day Indonesia located east and west of Wallace's and Lydekker's Lines, respectively) and the former continent of Sahul (which once combined New Guinea and Australia during lower sea levels in the Pleistocene). Notably, these regions have been important areas of human evolution throughout the Late Pleistocene, as documented by diverse fossil and archaeological records which attest to the regional presence of multiple hominin species prior to the arrival of anatomically modern human (AMH) migrants.

View Article and Find Full Text PDF

The role of natural selection in shaping biological diversity is an area of intense interest in modern biology. To date, studies of positive selection have primarily relied on genomic datasets from contemporary populations, which are susceptible to confounding factors associated with complex and often unknown aspects of population history. In particular, admixture between diverged populations can distort or hide prior selection events in modern genomes, though this process is not explicitly accounted for in most selection studies despite its apparent ubiquity in humans and other species.

View Article and Find Full Text PDF

Xu et al. (2021) recently recommended a new parameterization of as a superior alternative to the widely-used algorithm to map ancient DNA sequencing data. Here, we compare the parameterization recommended by Xu et al.

View Article and Find Full Text PDF

Our paper about the impacts of the Laschamps Geomagnetic Excursion 42,000 years ago has provoked considerable scientific and public interest, particularly in the so-called Adams Event associated with the initial transition of the magnetic poles. Although we welcome the opportunity to discuss our new ideas, Hawks’ assertions of misrepresentation are especially disappointing given his limited examination of the material.

View Article and Find Full Text PDF

Our study on the exact timing and the potential climatic, environmental, and evolutionary consequences of the Laschamps Geomagnetic Excursion has generated the hypothesis that geomagnetism represents an unrecognized driver in environmental and evolutionary change. It is important for this hypothesis to be tested with new data, and encouragingly, none of the studies presented by Picin . undermine our model.

View Article and Find Full Text PDF

The tropical archipelago of Wallacea contains thousands of individual islands interspersed between mainland Asia and Near Oceania, and marks the location of a series of ancient oceanic voyages leading to the peopling of Sahul-i.e., the former continent that joined Australia and New Guinea at a time of lowered sea level-by 50,000 years ago.

View Article and Find Full Text PDF

The current standard practice for assembling individual genomes involves mapping millions of short DNA sequences (also known as DNA 'reads') against a pre-constructed reference genome. Mapping vast amounts of short reads in a timely manner is a computationally challenging task that inevitably produces artefacts, including biases against alleles not found in the reference genome. This reference bias and other mapping artefacts are expected to be exacerbated in ancient DNA (aDNA) studies, which rely on the analysis of low quantities of damaged and very short DNA fragments (~30-80 bp).

View Article and Find Full Text PDF
Article Synopsis
  • The fossil record in Island Southeast Asia shows that two ancient species, Homo luzonensis and H. floresiensis, coexisted with anatomically modern humans over 50,000 years ago.
  • Genetic studies reveal that modern human populations in this region have genetic traces from Denisovans, a different hominin group with no fossil evidence found in ISEA.
  • Despite finding Denisovan ancestry, our research did not uncover significant genetic signals linking modern humans to the super-archaic species, prompting further investigation into the hominin history and origins of Denisovans.
View Article and Find Full Text PDF

Geological archives record multiple reversals of Earth's magnetic poles, but the global impacts of these events, if any, remain unclear. Uncertain radiocarbon calibration has limited investigation of the potential effects of the last major magnetic inversion, known as the Laschamps Excursion [41 to 42 thousand years ago (ka)]. We use ancient New Zealand kauri trees () to develop a detailed record of atmospheric radiocarbon levels across the Laschamps Excursion.

View Article and Find Full Text PDF

Motivation: genozip is a new lossless compression tool for Variant Call Format (VCF) files. By applying field-specific algorithms and fully utilizing the available computational hardware, genozip achieves the highest compression ratios amongst existing lossless compression tools known to the authors, at speeds comparable with the fastest multi-threaded compressors.

Availability And Implementation: genozip is freely available to non-commercial users.

View Article and Find Full Text PDF

The genetic architecture of adaptive traits is of key importance to predict evolutionary responses. Most adaptive traits are polygenic-i.e.

View Article and Find Full Text PDF

The combination of experimental evolution with high-throughput sequencing of pooled individuals-, evolve and resequence (E&R)-is a powerful approach to study adaptation from standing genetic variation under controlled, replicated conditions. Nevertheless, E&R studies in have frequently resulted in inordinate numbers of candidate SNPs, particularly for complex traits. Here, we contrast the genomic signature of adaptation following ∼60 generations in a novel hot environment for and For , the regions carrying putatively selected loci were far more distinct, and thus harbored fewer false positives, than those in We propose that species without segregating inversions and higher recombination rates, such as , are better suited for E&R studies that aim to characterize the genetic variants underlying the adaptive response.

View Article and Find Full Text PDF

The analysis of polymorphism data is becoming increasingly important as a complementary tool to classical genetic analyses. Nevertheless, despite plunging sequencing costs, genomic sequencing of individuals at the population scale is still restricted to a few model species. Whole-genome sequencing of pools of individuals (Pool-seq) provides a cost-effective alternative to sequencing individuals separately.

View Article and Find Full Text PDF

Various approaches can be applied to uncover the genetic basis of natural phenotypic variation, each with their specific strengths and limitations. Here, we use a replicated genome-wide association approach (Pool-GWAS) to fine-scale map genomic regions contributing to natural variation in female abdominal pigmentation in Drosophila melanogaster, a trait that is highly variable in natural populations and highly heritable in the laboratory. We examined abdominal pigmentation phenotypes in approximately 8000 female European D.

View Article and Find Full Text PDF