Publications by authors named "Ravindra Kumar Yadav"

Realizing lattices of exciton polariton condensates has been of much interest owing to the potential of such systems to realize analogue Hamiltonian simulators and physical computing architectures. Here, we report the realization of a room temperature polariton condensate lattice using a direct-write approach. Polariton condensation is achieved in a microcavity embedded with host-guest Frenkel excitons of an organic dye (rhodamine) in a small-molecule ionic isolation lattice (SMILES).

View Article and Find Full Text PDF

Agricultural productivity is threatened by increasing incidence of drought and the drought tolerant cyanobacteria offer a better solution in the restoration of soil fertility and productivity. The present study describes the comparative physiological response of the cyanobacterium Anabaena sp. acclimated and un-acclimated to desiccation stress induced by polyethylene glycol (10% PEG).

View Article and Find Full Text PDF

Chiral interfaces provide a new platform to execute quantum control of light-matter interactions. One phenomenon which has emerged from engineering such nanophotonic interfaces is spin-momentum locking akin to similar reports in electronic topological materials and phases. While there are reports of spin-momentum locking with combination of chiral emitters and/or chiral metamaterials with directional far field excitation it is not readily observable with both achiral emitters and metamaterials.

View Article and Find Full Text PDF

Background & Objectives: Indoor residual spraying (IRS) is part of a key strategy for elimination of visceral leishmaniasis (kala-azar). IRS for kala-azar elimination in India uses 125 g 5% alpha-Cypermethrin wettable powder which is mixed with 7.5 litres of water and sprayed on walls using hand compression sprayers.

View Article and Find Full Text PDF

Background: The visceral leishmaniasis (kala-azar) elimination programme in India relies on indoor residual spraying (IRS) for sand-fly vector control. Insecticide supplied by a new manufacturer was introduced for IRS in 2019. We aimed to explore whether this led to a change in insecticide quantity being used in the field.

View Article and Find Full Text PDF

Achieving propagation lengths in hybrid plasmonic systems beyond typical values of tens of micrometers is important for quantum plasmonics applications. We report long-range optical energy propagation due to excitons in semiconductor quantum dots (SQDs) being strongly coupled to surface lattice resonance (SLRs) in silver nanoparticle arrays. Photoluminescence (PL) measurements provide evidence of an exciton-SLR (ESLR) mode extending at least 600 μm from the excitation region.

View Article and Find Full Text PDF

Colloidal quantum dot (CQD) assemblies exhibit interesting optoelectronic properties when coupled to optical resonators ranging from Purcell-enhanced emission to the emergence of hybrid electronic and photonic polariton states in the weak and strong coupling limits, respectively. Here, experiments exploring the weak-to-strong coupling transition in CQD-plasmonic lattice hybrid devices at room temperature are presented for varying CQD concentrations. To interpret these results, generalized retarded Fano-Anderson and effective medium models are developed.

View Article and Find Full Text PDF

Aspergillus fumigatus is one of the most common opportunistic fungal pathogens responsible for a variety of diseases in human, from allergic bronchopulmonary aspergillosis to chronic pulmonary aspergillosis, mostly in immunocompromized patients. In this study, one monoclonal antibody MAb R-5 (IgM) raised against enolase cell surface protein of A. fumigatus exhibited significant inhibition of spore germination in A.

View Article and Find Full Text PDF

Carboxylate efflux from roots is a crucial and differential response of soybean genotypes to low phosphorus (P) stress. Exudation of carboxylic acids including oxalate, citrate, succinate and fumarate was induced under low P stress, particularly in P-efficient soybean genotypes. Enhancement of root length, surface area and volume further improved P acquisition under low P stress.

View Article and Find Full Text PDF

Herein, we report the first demonstration of room temperature enhanced light-matter coupling in the visible regime for metamaterials using cooperative coupled quasi two dimensional quantum dot assemblies located at precise distances from the hyperbolic metamaterial (HMM) templates. The non-monotonic variation of the magnitude of strong coupling, manifested in terms of strong splitting of the photoluminescence of quantum dots, can be explained in terms of enhanced LDOS near the surface of such metamaterials as well as the plasmon mediated super-radiance of closely spaced quantum dots (QDs). Our methodology of enhancing broadband, room temperature, light-matter coupling in the visible regime for metamaterials opens up new possibilities of utilising these materials for a wide range of applications including QD based thresholdless nanolasers and novel metamaterial based integrated photonic devices.

View Article and Find Full Text PDF

The halotolerant cyanobacterium Anabaena sp was grown under NaCl concentration of 0, 170 and 515 mM and physiological and proteomic analysis was performed. At 515 mM NaCl the cyanobacterium showed reduced photosynthetic activities and significant increase in soluble sugar content, proline and SOD activity. On the other hand Anabaena sp grown at 170 mM NaCl showed optimal growth, photosynthetic activities and comparatively low soluble sugar content, proline accumulation and SOD activity.

View Article and Find Full Text PDF

Freshly separated cyanobionts of Azolla microphylla and Azolla caroliniana plants exposed to salinity showed decline in the cellular constituents such as chlorophyll (23.1 and 38.9%) and protein (12.

View Article and Find Full Text PDF

Salinity stress causes adverse physiological and biochemical changes in the growth and productivity of a plant. Azolla, a symbiotic pteridophyte and potent candidate for biofertilizer due to its nitrogen fixation ability, shows reduced growth and nitrogen fixation during saline stress. To better understand regulatory components involved in salinity-induced physiological changes, in the present study, Azolla microphylla plants were exposed to NaCl (6.

View Article and Find Full Text PDF