Publications by authors named "Ramasatyaveni Geesala"

Background And Objectives: Crohn's disease (CD) is an inflammatory bowel disease (IBD) characterized by transmural inflammation and intestinal fibrosis involving mostly the small intestine and colon. The pathogenic mechanisms of CD remain incompletely understood and cures are unavailable. Current medical therapies are aimed at inducing prolonged remission.

View Article and Find Full Text PDF

Crohn's disease (CD) is an inflammatory bowel disease characterized by transmural inflammation and intestinal fibrosis. Mechanisms of fibrosis in CD are not well understood. Transmural inflammation is associated with inflammatory cell infiltration, stenosis, and distention, which present mechanical stress (MS) to the bowel wall.

View Article and Find Full Text PDF

Exclusive enteral nutrition (EEN) is an established dietary treatment for Crohn's disease (CD) by alleviating inflammation and inducing remission. However, the mechanisms of action of EEN are incompletely understood. As CD is associated with gut microbiome dysbiosis, we investigated the effect of EEN on the microbiome in a rat model of CD-like colitis.

View Article and Find Full Text PDF

Short Title: Benzimidazoisoquinoline derivatives as potent antifibrotics Hepatic fibrosis is a pathological condition of liver disease with an increasing number of cases worldwide. Therapeutic strategies are warranted to target the activated hepatic stellate cells (HSCs), the collagen-producing cells, an effective strategy for controlling the disease progression. Benzimidazoisoquinoline derivatives were synthesized as hybrid molecules by the combination of benzimidazoles and isoquinolines to evaluate their anti-fibrotic potential using an in-vitro and in-vivo model of hepatic fibrosis.

View Article and Find Full Text PDF

Background And Aims: Exclusive enteral nutrition (EEN) with a liquid diet is the only established dietary treatment for Crohn's' disease (CD). However, the mechanism of action of EEN in CD is unclear. T helper 17 (Th17) immune response plays a critical role in CD.

View Article and Find Full Text PDF

Gut smooth muscle dysfunctions contribute to symptoms such as abdominal cramping, diarrhea, and constipation in inflammatory bowel disease (IBD). The mechanisms for muscle dysfunctions are incompletely understood. We tested the hypothesis that mechanical stress plays a role in muscle dysfunction in a rat model of Crohn's-like colitis where inflammatory stenosis leads to mechanical distention in the pre-inflammation site.

View Article and Find Full Text PDF

: Inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis, is a chronic inflammatory disorder characterized by aberrant immune responses and compromised barrier function in the gastrointestinal tract. IBD is associated with altered gut microbiota and their metabolites in the colon. Butyrate, a gut microbial metabolite, plays a crucial role in regulating immune function, epithelial barrier function, and intestinal homeostasis.

View Article and Find Full Text PDF

Consumption of coffee has benefits in postoperative ileus. We tested the hypothesis that the benefits may be related to the effects of coffee on gut microbiota and motility and studied the mechanisms of action in rats. The in vitro and in vivo effects of regular and decaffeinated (decaf) coffee on gut microbiota of the ileum and colon were determined by bacterial culture and quantitative RT-PCR.

View Article and Find Full Text PDF

Inflammatory bowel diseases (IBD) such as Crohn's disease (CD) are chronic inflammatory disorders of the gastrointestinal tract affecting approximately 20 per 1,00,000 in Europe and USA. CD is characterized by transmural inflammation, intestinal fibrosis, and luminal stenosis. Although anti-inflammatory therapies may help control inflammation, they have no efficacy on fibrosis and stenosis in CD.

View Article and Find Full Text PDF

Inflammatory bowel disease (IBD) is a serious public health problem in Western society with a continuing increase in incidence worldwide. Safe, targeted medicines for IBD are not yet available. Autophagy, a vital process implicated in normal cell homeostasis, provides a potential point of entry for the treatment of IBDs, as several autophagy-related genes are associated with IBD risk.

View Article and Find Full Text PDF

Mechano-transcription is a process whereby mechanical stress alters gene expression. The gastrointestinal (GI) tract is composed of a series of hollow organs, often encountered by transient or persistent mechanical stress. Recent studies have revealed that persistent mechanical stress is present in obstructive, functional, and inflammatory disorders and alters gene transcription in these conditions.

View Article and Find Full Text PDF

Chronic obesity is associated with metabolic imbalance leading to diabetes, dyslipidemia, and cardiovascular diseases (CVDs), in which inflammation is caused by exposure to inflammatory stimuli, such as accumulating sphingolipid ceramides or intracellular stress. This inflammatory response is likely to be prolonged by the effects of dietary and blood cholesterol, thereby leading to chronic low-grade inflammation and endothelial dysfunction. Elevated levels of pro-inflammatory cytokines such as tumor necrosis factor (TNF) are predictive of CVDs and have been widely studied for potential therapeutic strategies.

View Article and Find Full Text PDF

Background: Low-grade inflammation and metabolic dysregulation are common comorbidities of obesity, both of which are associated with alterations in iRhom2-regulated pro-inflammatory cytokine and epidermal growth factor receptor (EGFR) ligand signaling.

Objective: Our objective was to determine the role of iRhom2 in the regulation of low-grade inflammation and metabolic dysregulation in a murine model of diet-induced obesity.

Methods: Wild type (WT) and iRhom2-deficient mice were fed normal chow (NC) or a high-fat diet (HFD) starting at 5 weeks of age for up to 33 weeks.

View Article and Find Full Text PDF

iRhoms are related to a family of intramembrane serine proteinases called rhomboids but lack proteolytic activity. In mammals, there are two iRhoms, iRhom1 and iRhom2, which have similar domain structures and overlapping specificities as well as distinctive functions. These catalytically inactive rhomboids are essential regulators for the maturation and trafficking of the disintegrin metalloprotease ADAM17 from the endoplasmic reticulum to the cell surface, and are required for the cleavage and release of a variety of membrane-associated proteins, including the IL-6 receptor, l-selectin, TNF, and EGFR ligands.

View Article and Find Full Text PDF

Inflammatory bowel disease (IBD) is a heterogeneous group of inflammation-mediated pathologies that include Crohn's disease and ulcerative colitis and primarily affects the colon and small intestine. Previous studies have shown that a disintegrin and metalloprotease (ADAM) 17, a membrane-bound sheddase, capable of cleaving the proinflammatory cytokine TNF and epidermal growth factor receptor ligands, plays a critical role in maintaining gut homeostasis and modulating intestinal inflammation during IBD. Rhomboid 5 homolog 2 (RHBDF2), a catalytically inactive member of the rhomboid family of intramembrane serine proteases, was recently identified as a crucial regulator of ADAM17.

View Article and Find Full Text PDF

Apoptotic hepatocytes release factors that activate hepatic stellate cells (HSCs), thereby inducing hepatic fibrosis. In the present study, in vivo and in vitro injury models were established using acetaminophen, ethanol, carbon tetrachloride, or thioacetamide. Histology of hepatotoxicant-induced diseased hepatic tissue correlated with differential expression of fibrosis-related genes.

View Article and Find Full Text PDF

Stem cells exposed to pathological levels of reactive oxygen species (ROS) at wound sites fail to regenerate tissue. The molecular mechanism underlying differential levels of ROS-mediated regulation of stem cells remains elusive. This study elucidates the mechanistic role of catalase at 10 μ HO-induced proliferation of mouse bone marrow stromal (BMSC) and hematopoietic (HSPC) stem/progenitor cells.

View Article and Find Full Text PDF

Background: Engraftment of transplanted stem cells is often limited by cytokine and noncytokine proinflammatory mediators at the injury site. We examined the role of Cyclooxygenase-2 (Cox-2)-induced cytokine-mediated inflammation on engraftment of transplanted bone marrow stem cells (BMSCs) at the wound site.

Methods: BMSCs isolated from male C57/BL6J mice were transplanted onto excisional splinting wounds in syngenic females in presence or absence of celecoxib, Cox-2 specific inhibitor (50 mg/kg, body weight [b wt]), to evaluate engraftment and wound closure.

View Article and Find Full Text PDF

A series of twenty-five 2-azitidinone (β-lactam) derivatives were synthesized and evaluated for anti-cancer properties against breast cancer, MCF-7 and MDA-MB-231. These β-lactam derivatives depicted significant cytotoxicity in cancer cell lines but not in normal human mammary epithelial cells, MEpiC. Interestingly, derivatives of 2-bromo ethyl acrylonitrile (19w) exhibited - potent anti-proliferative activity with IC, 5.

View Article and Find Full Text PDF

Mouse bone marrow stromal stem/progenitor cells (BMSCs, also known as bone marrow-derived mesenchymal stem cells) and Hematopoietic Stem and Progenitor Cells (HSPCs) with differential proliferative potentials were investigated for identifying epigenetic signals that can modulate their growth. In the present study, immunodepletion of granulo-monocytic (CD11b) and erythroid (Ter119) population yielded CD11b(-)/Ter119(-) cells, capable of differentiating into chondrogenic, osteogenic and adipogenic cells. Enrichment of the CD11b(+) population by positive selection of multipotent stem/progenitor marker (CD133) yielded CD11b(+)/CD133(+) cells, efficiently differentiated into hematopoietic lineages.

View Article and Find Full Text PDF

Low bioavailability and/or survival at the injury site of transplanted stem cells necessitate its delivery using a biocompatible, biodegradable cell delivery vehicle. In this dataset, we report the application of a porous biocompatible, biodegradable polymer network that successfully delivers bone marrow stem cells (BMSCs) at the wound site of a murine excisional splint wound model. In this data article, we are providing the additional data of the reference article "Porous polymer scaffold for on-site delivery of stem cells - protects from oxidative stress and potentiates wound tissue repair" (Ramasatyaveni et al.

View Article and Find Full Text PDF

Wound healing by cell transplantation techniques often suffer setbacks due to oxidative stress encountered at injury sites. A porous polyethyleneglycol-polyurethane (PEG-PU) scaffold that facilitates cell delivery and boosts tissue repair was developed through semi-interpenetrating polymer network approach. The key physico-chemical properties assessed confirms these polymeric matrices are highly thermostable, barostable, degrade at an acidic pH (5.

View Article and Find Full Text PDF

An efficient synthesis of a new series of tamoxifen mimics is described by employing iodine catalyzed ipsocyclization strategy followed by Suzuki coupling. A molecular docking studies of the synthesized compounds 11a-n and 12 in estrogen receptor (ER-α) showed that the scaffolds are fitting well in the groove, thereby suggesting them as promising antiproliferative agents for estrogen dependent breast cancer lines. All compounds were tested in vitro against breast cancer cell lines-ER positive, MCF-7; ER negative, MDA-MB-231; and control mammary epithelial cells, MEpiC.

View Article and Find Full Text PDF