The hyperfluorescence (HF) system has drawn great attention in display technology. However, the energy loss mechanism by low reverse intersystem crossing rate (k) and the Dexter energy transfer (DET) channel is still challenging. Here, we demonstrate that this can be mitigated by the quadrupolar donor-acceptor-donor (D-A-D) type of thermally activated delayed fluorescence (TADF) sensitizer materials, DBA-DmICz and DBA-DTMCz.
View Article and Find Full Text PDFACS Appl Mater Interfaces
August 2022
The novel carbazole-based multiresonance types of thermally activated delayed fluorescence (MR-TADF) emitters of mICz-DABNA and BFCz-DABNA are reported, and their spectroscopic properties are investigated with the inductive effect on the central nitrogen atom for pure and deep blue emission. With the introduction of electron-donating/-withdrawing properties of substituents, emitters exhibited the bathochromic/hypsochromic shifted emission, respectively, compared to simple carbazole-based MR-TADF. Moreover, their spectral bandwidths became narrower.
View Article and Find Full Text PDFThe proliferation of the latest electronic gadgets and wireless communication devices can trigger electromagnetic interference (EMI), which has a detrimental impact on electronic devices and humans. Efficient EMI shielding materials are required for EMI-SE and they should be durable in external environments, lightweight, and cost-effective. GNO-coated glass-fiber-GNO-maleic anhydride-grafted polypropylene (MAPP) composite and carbon fiber-reinforced nylon 1D-2D nanocomposite foam were successfully prepared a cost-effective thermal process.
View Article and Find Full Text PDFEfficient conversion of light from short wavelengths to longer wavelengths using color conversion layers (CCLs) underpins the successful operation of numerous contemporary display and lighting technologies. Inorganic quantum dots, based on CdSe or InP, for example, have received much attention in this context, however, suffer from instability and toxic cadmium or phosphine chemistry. Organic nanoparticles (NPs), though less often studied, are capable of very competitive performance, including outstanding stability and water-processability.
View Article and Find Full Text PDFTwo small molecular hole-transporting type materials, namely 4-(9,9-dimethylacridin-10(9)-yl)--(4-(9,9-dimethylacridin-10(9)-yl)phenyl)--phenylaniline (TPA-2ACR) and 10,10'-(9-phenyl-9-carbazole-3,6-diyl)bis(9,9-dimethyl-9,10-dihydroacridine) (PhCAR-2ACR), were designed and synthesized using a single-step Buchwald-Hartwig amination between the dimethyl acridine and triphenylamine or carbazole moieties. Both materials showed high thermal decomposition temperatures of 402 and 422 °C at 5% weight reduction for PhCAR-2ACR and TPA-2ACR, respectively. TPA-2ACR as hole-transporting material exhibited excellent current, power, and external quantum efficiencies of 55.
View Article and Find Full Text PDFPure organic molecules based thermally activated delayed fluorescence (TADF) emitters have been successfully developed in recent years for their propitious application in highly efficient organic light emitting diodes (OLEDs). In the case of orange red emitters, the non-radiative process is known to be a serious issue due to its lower lying singlet energy level. However, recent studies indicate that there are tremendous efforts put to develop efficient orange red TADF emitters.
View Article and Find Full Text PDFNanomaterials (Basel)
October 2020
The cost-effective spray coated composite was successfully synthesis and characterized by scanning electron microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, and X-ray diffraction techniques. The one step synthetic strategy was used for the synthesis of nanoplates that have a crystalline nature. The composites are amorphous and hydrophobic with micron thickness (<400 m).
View Article and Find Full Text PDFMXene and conductive polymers are attractive candidates for electromagnetic interference shielding (EMI) applications. The MXene-PAT-conductive polymer (CP) composites were fabricated by a cost-effective spray coating technique and characterized using X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), X-ray diffraction (XRD) and Raman spectroscopy. A new approach has been developed for the synthesis of exfoliated MXene.
View Article and Find Full Text PDFHigh-efficiency thermally activated delayed fluorescence (TADF) is leading the third-generation technology of organic light-emitting diodes (OLEDs). TADF emitters are designed and synthesized using inexpensive organic donor and acceptor derivatives. TADF emitters are a potential candidate for next-generation display technology when compared with metal-complex-based phosphorescent dopants.
View Article and Find Full Text PDFMXenes, carbon nanotubes, and nanoparticles are attractive candidates for electromagnetic interference (EMI) shielding. The composites were prepared through a filtration technique and spray coating process. The functionalization of non-woven carbon fabric is an attractive strategy.
View Article and Find Full Text PDFSunlight active UO@ZnO nanocomposite photocatalyst has been synthesized for the first time using co-precipitation method. The synthesized composite has a particle size ranging from 18 nm to 30 nm with band gap energy of 2.9 eV.
View Article and Find Full Text PDFMXene and graphene based thin, flexible and low-density composite were prepared by cost effective spray coating and solvent casting method. The fabricated composite was characterized using Raman spectroscopy, X-ray diffraction (XRD), scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray (EDX). The prepared composites showed hydrophobic nature with higher contact angle of 126°, -43 mN·m wetting energy, -116 mN·m spreading Coefficient and 30 mN·m lowest work of adhesion.
View Article and Find Full Text PDFIn this study, a series of bipolar fluorescence emitters named 2DPAc-OXD, DPAc-OXD, 2PTZ-OXD and PTZ-OXD were designed and synthesized with excellent yields. The characterization of materials was investigated by using nuclear magnetic resonance (NMR) (¹H, C), mass spectrometry and thermogravimetric analysis (TGA). To investigate device efficiencies, two different OLED devices (Device 1, Device 2) were fabricated with two different host materials (Bepp₂, DPEPO).
View Article and Find Full Text PDFTwo new hole transporting materials, 2,7-bis(9,9-diphenylacridin-10(9)-yl)-9,9' spirobi[fluorene] (SP1) and 2,7-di(10-phenothiazin-10-yl)-9,9'-spirobi[fluorene] (SP2), were designed and synthesized by using the Buchwald-Hartwig coupling reaction with a high yield percentage of over 84%. Both of the materials exhibited high glass transition temperatures of over 150 °C. In order to understand the device performances, we have fabricated green phosphorescent organic light-emitting diodes (PhOLEDs) with SP1 and SP2 as hole transporting materials.
View Article and Find Full Text PDFTwo new hole transporting materials, named and , were designed and synthesized in significant yields using the well-known Buchwald Hartwig and Suzuki cross- coupling reactions. Both materials showed higher decomposition temperatures (over 450 °C) at 5% weight reduction and exhibited a higher glass transition temperature of 180 °C. Red phosphorescence-based OLED devices were fabricated to analyze the device performances compared to Spiro-NPB and NPB as reference hole transporting materials.
View Article and Find Full Text PDF