Publications by authors named "Rakhee Banerjee"

Unlabelled: Primary liver cancer accounts for approximately 700,000 deaths worldwide annually ranking third in cancer-related mortality, with hepatocellular carcinoma (HCC) comprising the majority of these tumors. Metabolic dysfunction-associated steatotic liver disease (MASLD) is currently a leading cause of HCC in the United States. We previously identified the lipid hydrolase alpha/beta hydrolase domain 6 (ABHD6) as a key mediator of the development of metabolic syndrome and intimately involved in cell signaling, making it a prime target for investigation in MASLD-related HCC.

View Article and Find Full Text PDF

Carotenoids, essential nutrients for eye health, are absorbed in the intestine to support vitamin A homeostasis and provide cellular protection. This process involves the lipid transporters scavenger receptor class B type 1 (SR-B1, encoded by Scarb1 gene) and Niemann-Pick C1-Like 1 (NPC1L1), which load these dietary lipids into the plasma membrane of intestinal enterocytes. However, the precise contribution of these transporters to carotenoid absorption, the putative involvement of Aster proteins in their downstream movement, and the interactions with their metabolizing enzymes, β-carotene oxygenase 1 (BCO1) and β-carotene oxygenase 2 (BCO2), remain incompletely understood.

View Article and Find Full Text PDF

Background & Aims: In Crohn's disease, wrapping of mesenteric fat around the bowel wall, so-called "creeping fat," is highly associated with strictures. The strongest contributor to luminal narrowing in strictures is a thickening of the human intestinal muscularis propria (MP). We investigated creeping fat-derived factors and their effect on mechanisms of human intestinal MP smooth muscle cell (HIMC) hyperplasia.

View Article and Find Full Text PDF

Imidazole Propionate (ImP), a gut-derived metabolite from histidine, affects insulin signaling in mice and is elevated in type 2 diabetes (T2D). However, the source of histidine and the role of the gut microbiota remain unclear. We conducted an intervention study in mice and humans, comparing ImP kinetics in mice on a high-fat diet with varying histidine levels and antibiotics, and assessed ImP levels in healthy and T2D subjects with histidine supplementation.

View Article and Find Full Text PDF

Unlabelled: Hepatocellular carcinoma (HCC) is the third leading cause of cancer death worldwide. The gut microbiome has been implicated in outcomes for HCC, and gut microbe-derived products may serve as potential non-invasive indices for early HCC detection. This study evaluated differences in plasma concentrations of gut microbiota-derived metabolites.

View Article and Find Full Text PDF
Article Synopsis
  • The Aster-C protein, located in the endoplasmic reticulum, is thought to play a role in cholesterol transport, but its exact function in cholesterol homeostasis is unclear.
  • In a study involving mice lacking Aster-C, researchers found no significant changes in cholesterol levels in feces, liver, or plasma when subjected to different dietary cholesterol levels.
  • Despite minimal effects on overall cholesterol metabolism, Aster-C deficiency led to slightly reduced bile acids and increased cortisol under low dietary cholesterol, indicating some role in hormone regulation rather than in cholesterol balance.
View Article and Find Full Text PDF

Recent genome-wide association studies (GWAS) have identified a link between single-nucleotide polymorphisms (SNPs) near the MBOAT7 gene and advanced liver diseases. Specifically, the common MBOAT7 variant (rs641738) associated with reduced MBOAT7 expression is implicated in non-alcoholic fatty liver disease (NAFLD), alcohol-associated liver disease (ALD), and liver fibrosis. However, the precise mechanism underlying MBOAT7-driven liver disease progression remains elusive.

View Article and Find Full Text PDF
Article Synopsis
  • Recent genome-wide association studies have linked specific SNPs near the MBOAT7 gene to increased risk for advanced liver diseases like NAFLD and ALD, especially in people with chronic hepatitis infections.
  • The MBOAT7 gene is crucial for producing a specific lipid, and a common variant (rs641738) lowers its expression, which exacerbates liver disease progression.
  • Research shows that deleting MBOAT7 in liver cells leads to more severe alcohol-induced liver damage, highlighting how alterations in lipid metabolism can affect liver health in heavy drinkers.
View Article and Find Full Text PDF

Background And Aims: Genome and epigenome wide association studies identified variants in carnitine palmitoyltransferase 1a (CPT1a) that associate with lipid traits. The goal of this study was to determine the role of liver-specific CPT1a on hepatic lipid metabolism.

Approach And Results: Male and female liver-specific knockout (LKO) and littermate controls were placed on a low-fat or high-fat diet (60% kcal fat) for 15 weeks.

View Article and Find Full Text PDF

Microbes living in the intestine can regulate key signaling processes in the central nervous system that directly impact brain health. This gut-brain signaling axis is partially mediated by microbe-host-dependent immune regulation, gut-innervating neuronal communication, and endocrine-like small molecule metabolites that originate from bacteria to ultimately cross the blood-brain barrier. Given the mounting evidence of gut-brain crosstalk, a new therapeutic approach of "psychobiotics" has emerged, whereby strategies designed to primarily modify the gut microbiome have been shown to improve mental health or slow neurodegenerative diseases.

View Article and Find Full Text PDF

Background And Aims: Genome and epigenome wide association studies identified variants in carnitine palmitoyltransferase 1a (CPT1a) that associate with lipid traits. The goal of this study was to determine the impact by which liver-specific CPT1a deletion impacts hepatic lipid metabolism.

Approach And Results: Six-to-eight-week old male and female liver-specific knockout (LKO) and littermate controls were placed on a low-fat or high-fat diet (HFD; 60% kcal fat) for 15 weeks.

View Article and Find Full Text PDF

The gut microbiome is complex, raising questions about the role of individual strains in the community. Here, we address this question by constructing variants of a complex defined community in which we eliminate strains that occupy the bile acid 7α-dehydroxylation niche. Omitting Clostridium scindens (Cs) and Clostridium hylemonae (Ch) eliminates secondary bile acid production and reshapes the community in a highly specific manner: eight strains change in relative abundance by >100-fold.

View Article and Find Full Text PDF

We previously demonstrated that antisense oligonucleotide-mediated knockdown of Mboat7, the gene encoding membrane bound O-acyltransferase 7, in the liver and adipose tissue of mice promoted high fat diet-induced hepatic steatosis, hyperinsulinemia, and systemic insulin resistance. Thereafter, other groups showed that hepatocyte-specific genetic deletion of Mboat7 promoted striking fatty liver and NAFLD progression in mice but does not alter insulin sensitivity, suggesting the potential for cell autonomous roles. Here, we show that MBOAT7 function in adipocytes contributes to diet-induced metabolic disturbances including hyperinsulinemia and systemic insulin resistance.

View Article and Find Full Text PDF
Article Synopsis
  • Eating fruits and vegetables is good for heart health, but scientists aren't totally sure how it works yet.
  • Researchers found that a special part of flavonoids, called 4-HPAA, helps reduce health problems caused by a high-fat diet.
  • Only a tiny number of people have the right bacteria in their guts to make 4-HPAA from flavonoids, which shows that not everyone can get these health benefits from their diet.
View Article and Find Full Text PDF

Exposure to some environmental pollutants can have potent endocrine-disrupting effects, thereby promoting hormone imbalance and cardiometabolic diseases such as non-alcoholic fatty liver disease (NAFLD), diabetes, and cardiorenal diseases. Recent evidence also suggests that many environmental pollutants can reorganize the gut microbiome to potentially impact these diverse human diseases. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is among the most potent endocrine-disrupting dioxin pollutants, yet our understanding of how TCDD impacts the gut microbiome and systemic metabolism is incompletely understood.

View Article and Find Full Text PDF

There is mounting evidence that microbes residing in the human intestine contribute to diverse alcohol-associated liver diseases (ALD) including the most deadly form known as alcohol-associated hepatitis (AH). However, mechanisms by which gut microbes synergize with excessive alcohol intake to promote liver injury are poorly understood. Furthermore, whether drugs that selectively target gut microbial metabolism can improve ALD has never been tested.

View Article and Find Full Text PDF

Obesity has repeatedly been linked to reorganization of the gut microbiome, yet to this point obesity therapeutics have been targeted exclusively toward the human host. Here, we show that gut microbe-targeted inhibition of the trimethylamine N-oxide (TMAO) pathway protects mice against the metabolic disturbances associated with diet-induced obesity (DIO) or leptin deficiency (). Small molecule inhibition of the gut microbial enzyme choline TMA-lyase (CutC) does not reduce food intake but is instead associated with alterations in the gut microbiome, improvement in glucose tolerance, and enhanced energy expenditure.

View Article and Find Full Text PDF

Background: A major contributor to cardiometabolic disease is caloric excess, often a result of consuming low cost, high calorie fast food. Studies have demonstrated the pivotal role of gut microbes contributing to cardiovascular disease in a diet-dependent manner. Given the central contributions of diet and gut microbiota to cardiometabolic disease, we hypothesized that microbial metabolites originating after fast food consumption can elicit acute metabolic responses in the liver.

View Article and Find Full Text PDF
Article Synopsis
  • Recent research has found a genetic variant (rs641738) linked to higher risk of non-alcoholic fatty liver disease (NAFLD) and related liver conditions in individuals with viral hepatitis.
  • The study indicates that losing the function of a specific gene (MBOAT7) increases liver disease progression, which was previously suggested but not formally tested.
  • Findings in mice reveal that loss of MBOAT7 leads to the build-up of certain lipids (lysophosphatidylinositol) that cause liver inflammation and fibrosis, highlighting MBOAT7's crucial role in preventing NAFLD.
View Article and Find Full Text PDF

Drosophila Polycomb (PC), a subunit of Polycomb repressive complex 1 (PRC1), is well known for its role in maintaining repression of the homeotic genes and many others and for its binding to trimethylated histone H3 on Lys 27 (H3K27me3) via its chromodomain. Here, we identify a novel activity of PC: inhibition of the histone acetylation activity of CREB-binding protein (CBP). We show that PC and its mammalian CBX orthologs interact directly with the histone acetyltransferase (HAT) domain of CBP, binding to the previously identified autoregulatory loop, whose autoacetylation greatly enhances HAT activity.

View Article and Find Full Text PDF

Trithorax (TRX) antagonizes epigenetic silencing by Polycomb group (PcG) proteins, stimulates enhancer-dependent transcription, and establishes a 'cellular memory' of active transcription of PcG-regulated genes. The mechanisms underlying these TRX functions remain largely unknown, but are presumed to involve its histone H3K4 methyltransferase activity. We report that the SET domains of TRX and TRX-related (TRR) have robust histone H3K4 monomethyltransferase activity in vitro and that Tyr3701 of TRX and Tyr2404 of TRR prevent them from being trimethyltransferases.

View Article and Find Full Text PDF

Trithorax group (TrxG) proteins antagonize Polycomb silencing and are required for maintenance of transcriptionally active states. We previously showed that the Drosophila melanogaster acetyltransferase CREB-binding protein (CBP) acetylates histone H3 lysine 27 (H3K27ac), thereby directly blocking its trimethylation (H3K27me3) by Polycomb repressive complex 2 (PRC2) in Polycomb target genes. Here, we show that H3K27ac levels also depend on other TrxG proteins, including the histone H3K27-specific demethylase UTX and the chromatin-remodeling ATPase Brahma (BRM).

View Article and Find Full Text PDF

Polycomb Group (PcG) and Trithorax Group (TrxG) proteins are key epigenetic regulators of global transcription programs. Their antagonistic chromatin-modifying activities modulate the expression of many genes and affect many biological processes. Here we report that heterozygous mutations in two core subunits of Polycomb Repressive Complex 2 (PRC2), the histone H3 lysine 27 (H3K27)-specific methyltransferase E(Z) and its partner, the H3 binding protein ESC, increase longevity and reduce adult levels of trimethylated H3K27 (H3K27me3).

View Article and Find Full Text PDF

Trimethylation of histone H3 lysine 27 (H3K27me3) by Polycomb repressive complex 2 (PRC2) is essential for transcriptional silencing of Polycomb target genes, whereas acetylation of H3K27 (H3K27ac) has recently been shown to be associated with many active mammalian genes. The Trithorax protein (TRX), which associates with the histone acetyltransferase CBP, is required for maintenance of transcriptionally active states and antagonizes Polycomb silencing, although the mechanism underlying this antagonism is unknown. Here we show that H3K27 is specifically acetylated by Drosophila CBP and its deacetylation involves RPD3.

View Article and Find Full Text PDF

The body wall muscles in the Drosophila larva arise from interactions between Duf/Kirre and Irregular chiasm C-roughest (IrreC-rst)-expressing founder myoblasts and sticks-and-stones (SNS)-expressing fusion competent myoblasts in the embryo. Herein, we demonstrate that SNS mediates heterotypic adhesion of S2 cells with Duf/Kirre and IrreC-rst-expressing S2 cells, and colocalizes with these proteins at points of cell contact. These properties are independent of their transmembrane and cytoplasmic domains, and are observed quite readily with GPI-anchored forms of the ectodomains.

View Article and Find Full Text PDF