Publications by authors named "Ragunath Singaravelu"

: Oncolytic viruses infect and kill tumor cells while leaving normal cells unharmed. They are often attenuated through the reduction in their ability to antagonize antiviral defenses, leading to robust replication in tumor cells, which often possess defects in antiviral pathways, while minimizing replication in normal cells. However, not all tumors have defects in their antiviral defenses, and virus replication in these tumors is minimal, thus limiting therapeutic benefits.

View Article and Find Full Text PDF
Article Synopsis
  • Optimizing oncolytic viruses for cancer treatment involves removing harmful genes and adding new ones to improve their ability to replicate and stimulate immune responses.
  • The complex nature of viral genomes and the difficulty of creating modified viruses have slowed progress in developing these therapies.
  • Researchers used a novel strategy involving antibiotics, transposon systems, and advanced sequencing to efficiently engineer safer and more effective oncolytic viruses by identifying useful genetic changes.
View Article and Find Full Text PDF

SARS-CoV-2, the etiological agent behind the coronavirus disease 2019 (COVID-19) pandemic, has continued to mutate and create new variants with increased resistance against the WHO-approved spike-based vaccines. With a significant portion of the worldwide population still unvaccinated and with waning immunity against newly emerging variants, there is a pressing need to develop novel vaccines that provide broader and longer-lasting protection. To generate broader protective immunity against COVID-19, we developed our second-generation vaccinia virus-based COVID-19 vaccine, TOH-VAC-2, encoded with modified versions of the spike (S) and nucleocapsid (N) proteins as well as a unique poly-epitope antigen that contains immunodominant T cell epitopes from seven different SARS-CoV-2 proteins.

View Article and Find Full Text PDF

The large coding potential of vaccinia virus (VV) vectors is a defining feature. However, limited regulatory switches are available to control viral replication as well as timing and dosing of transgene expression in order to facilitate safe and efficacious payload delivery. Herein, we adapt drug-controlled gene switches to enable control of virally encoded transgene expression, including systems controlled by the FDA-approved rapamycin and doxycycline.

View Article and Find Full Text PDF

The recent SARS-CoV-2 and mpox outbreaks have highlighted the need to expand our arsenal of broad-spectrum antiviral agents for future pandemic preparedness. Host-directed antivirals are an important tool to accomplish this as they typically offer protection against a broader range of viruses than direct-acting antivirals and have a lower susceptibility to viral mutations that cause drug resistance. In this study, we investigate the exchange protein activated by cAMP (EPAC) as a target for broad-spectrum antiviral therapy.

View Article and Find Full Text PDF

Poxvirus vectors represent versatile modalities for engineering novel vaccines and cancer immunotherapies. In addition to their oncolytic capacity and immunogenic influence, they can be readily engineered to express multiple large transgenes. However, the integration of multiple payloads into poxvirus genomes by traditional recombination-based approaches can be highly inefficient, time-consuming and cumbersome.

View Article and Find Full Text PDF

We established a split nanoluciferase complementation assay to rapidly screen for inhibitors that interfere with binding of the receptor binding domain (RBD) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike glycoprotein with its target receptor, angiotensin-converting enzyme 2 (ACE2). After a screen of 1,200 US Food and Drug Administration (FDA)-approved compounds, we identified bifonazole, an imidazole-based antifungal agent, as a competitive inhibitor of RBD-ACE2 binding. Mechanistically, bifonazole binds ACE2 around residue K353, which prevents association with the RBD, affecting entry and replication of spike-pseudotyped viruses as well as native SARS-CoV-2 and its variants of concern (VOCs).

View Article and Find Full Text PDF
Article Synopsis
  • - Recent research highlights the need for innovative cancer treatments, particularly through the use of oncolytic viruses (OVs) that can attack tumors in multiple ways.
  • - The study discovers a specific amiRNA, called amiR-4, that enhances the effectiveness of a type of oncolytic virus, revealing ARID1A as a key factor in tumor resistance.
  • - Combining virus targeting of ARID1A with small-molecule inhibitors like EZH2 leads to effective killing of both infected and uninfected cancer cells, suggesting a new therapeutic strategy involving amiRNA and traditional treatments.
View Article and Find Full Text PDF
Article Synopsis
  • The COVID-19 pandemic highlights the need for effective vaccines, especially in isolated and developing regions.
  • A new temperature-stable vaccine candidate (TOH-Vac1) uses a modified vaccinia virus to deliver a spike protein antigen, demonstrating strong immune responses in animal models.
  • The vaccine shows high neutralizing antibody levels and protective immunity after one dose, supporting its further development as a viable alternative to existing vaccines.
View Article and Find Full Text PDF

The antimicrobial medication malarone (atovaquone/proguanil) is used as a fixed-dose combination for treating children and adults with uncomplicated malaria or as chemoprophylaxis for preventing malaria in travelers. It is an inexpensive, efficacious, and safe drug frequently prescribed around the world. Following anecdotal evidence from 17 patients in the provinces of Quebec and Ontario, Canada, suggesting that malarone/atovaquone may present some benefits in protecting against COVID-19, we sought to examine its antiviral potential in limiting the replication of SARS-CoV-2 in cellular models of infection.

View Article and Find Full Text PDF

The emergence of the COVID-19 pandemic has increased the need for better serological detection methods to determine the epidemiologic impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The increasing number of SARS-CoV-2 infections raises the need for better antibody detection assays. Current antibody detection methods compromise sensitivity for speed or are sensitive but time-consuming.

View Article and Find Full Text PDF

High-throughput detection strategies for antibodies against SARS-CoV-2 in patients recovering from COVID-19, or in vaccinated individuals, are urgently required during this ongoing pandemic. Serological assays are the most widely used method to measure antibody responses in patients. However, most of the current methods lack the speed, stability, sensitivity, and specificity to be selected as a test for worldwide serosurveys.

View Article and Find Full Text PDF

As the COVID-19 pandemic continues, there is an imminent need for rapid diagnostic tools and effective antivirals targeting SARS-CoV-2. We have developed a novel bioluminescence-based biosensor to probe a key host-virus interaction during viral entry: the binding of SARS-CoV-2 viral spike (S) protein to its receptor, angiotensin-converting enzyme 2 (ACE2). Derived from Nanoluciferase binary technology (NanoBiT), the biosensor is composed of Nanoluciferase split into two complementary subunits, Large BiT and Small BiT, fused to the Spike S1 domain of the SARS-CoV-2 S protein and ACE2 ectodomain, respectively.

View Article and Find Full Text PDF

Despite sequence similarity to SARS-CoV-1, SARS-CoV-2 has demonstrated greater widespread virulence and unique challenges to researchers aiming to study its pathogenicity in humans. The interaction of the viral receptor binding domain (RBD) with its main host cell receptor, angiotensin-converting enzyme 2 (ACE2), has emerged as a critical focal point for the development of anti-viral therapeutics and vaccines. In this study, we selectively identify and characterize the impact of mutating certain amino acid residues in the RBD of SARS-CoV-2 and in ACE2, by utilizing our recently developed NanoBiT technology-based biosensor as well as pseudotyped-virus infectivity assays.

View Article and Find Full Text PDF

The ongoing COVID-19 pandemic has highlighted the immediate need for the development of antiviral therapeutics targeting different stages of the SARS-CoV-2 life cycle. We developed a bioluminescence-based bioreporter to interrogate the interaction between the SARS-CoV-2 viral spike (S) protein and its host entry receptor, angiotensin-converting enzyme 2 (ACE2). The bioreporter assay is based on a nanoluciferase complementation reporter, composed of two subunits, large BiT and small BiT, fused to the S receptor-binding domain (RBD) of the SARS-CoV-2 S protein and ACE2 ectodomain, respectively.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) act as cellular signal transducers through repression of protein translation. Elucidating targets using bioinformatics and traditional quantitation methods is often insufficient to uncover global miRNA function. Herein, alteration of protein function caused by miRNA-185 (miR-185), an immunometabolic miRNA, was determined using activity-based protein profiling, transcriptomics, and lipidomics.

View Article and Find Full Text PDF

The ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic presents an urgent need for an effective vaccine. Molecular characterization of SARS-CoV-2 is critical to the development of effective vaccine and therapeutic strategies. In the present study, we show that the fusion of the SARS-CoV-2 spike protein receptor-binding domain to its transmembrane domain is sufficient to mediate trimerization.

View Article and Find Full Text PDF

The Hippo pathway plays a critical role in tissue and organ growth under normal physiological conditions, and its dysregulation in malignant growth has made it an attractive target for therapeutic intervention in the fight against cancer. To date, its complex signaling mechanisms have made it difficult to identify strong therapeutic candidates. Hippo signaling is largely carried out by two main activated signaling pathways involving receptor tyrosine kinases (RTKs)-the RTK/RAS/PI3K and the RTK-RAS-MAPK pathways.

View Article and Find Full Text PDF

Introduction: Immunotherapy is a rapidly evolving area of cancer therapeutics aimed at driving a systemic immune response to fight cancer. Oncolytic viruses (OVs) are at the cutting-edge of innovation in the immunotherapy field. Successful OV platforms must be effective in reshaping the tumor microenvironment and controlling tumor burden, but also be highly specific to avoid off-target side effects.

View Article and Find Full Text PDF

Upon immune recognition of viruses, the mammalian innate immune response activates a complex signal transduction network to combat infection. This activation requires phosphorylation of key transcription factors regulating IFN production and signaling, including IFN regulatory factor 3 (IRF3) and STAT1. The mechanisms regulating these STAT1 and IRF3 phosphorylation events remain unclear.

View Article and Find Full Text PDF

Vaccinia virus (VACV) possesses a great safety record as a smallpox vaccine and has been intensively used as an oncolytic virus against various types of cancer over the past decade. Different strategies were developed to make VACV safe and selective to cancer cells. Leading clinical candidates, such as Pexa-Vec, are attenuated through deletion of the viral thymidine kinase (TK) gene, which limits virus growth to replicate in cancer tissue.

View Article and Find Full Text PDF

Cancer stem cells (CSCs) have the capacity to self-renew and differentiate to give rise to heterogenous cancer cell lineages in solid tumors. These CSC populations are associated with metastasis, tumor relapse, and resistance to conventional anticancer therapies. Here, we focus on the use of oncolytic viruses (OVs) to target CSCs as well as the OV-driven interferon production in the tumor microenvironment (TME) that can repress CSC properties.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are part of a complex regulatory network that modulates cellular lipid metabolism. Here, we identify miR-124 as a regulator of triglyceride (TG) metabolism. This study advances our knowledge of the role of miR-124 in human hepatoma cells.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) have emerged as critical regulators of cellular metabolism. To characterise miRNAs crucial to the maintenance of hepatic lipid homeostasis, we examined the overlap between the miRNA signature associated with inhibition of peroxisome proliferator activated receptor-α (PPAR-α) signaling, a pathway regulating fatty acid metabolism, and the miRNA profile associated with 25-hydroxycholesterol treatment, an oxysterol regulator of sterol regulatory element binding protein (SREBP) and liver X receptor (LXR) signaling. Using this strategy, we identified microRNA-7 (miR-7) as a PPAR-α regulated miRNA, which activates SREBP signaling and promotes hepatocellular lipid accumulation.

View Article and Find Full Text PDF

Objective: Defective autophagy in macrophages leads to pathological processes that contribute to atherosclerosis, including impaired cholesterol metabolism and defective efferocytosis. Autophagy promotes the degradation of cytoplasmic components in lysosomes and plays a key role in the catabolism of stored lipids to maintain cellular homeostasis. microRNA-33 (miR-33) is a post-transcriptional regulator of genes involved in cholesterol homeostasis, yet the complete mechanisms by which miR-33 controls lipid metabolism are unknown.

View Article and Find Full Text PDF