Publications by authors named "Rafael Ramirez-Carracedo"

Numerous cardioprotective interventions have been reported to reduce myocardial infarct size (IS) in pre-clinical studies. However, their translation for the benefit of patients with acute myocardial infarction (AMI) has been largely disappointing. One reason for the lack of translation is the lack of rigor and reproducibility in pre-clinical studies.

View Article and Find Full Text PDF
Article Synopsis
  • The study looks at how a protein called NOS3 helps protect blood vessels by stopping harmful breakdown of important structures in the body called extracellular matrix.
  • Researchers tested this by feeding certain mice a high-fat diet and examining their blood vessels for signs of damage and disease.
  • They found that without NOS3, the mice got sicker, but removing another protein called MMP-13 helped them live longer and reduced the damage, suggesting that targeting these proteins could help treat blood vessel problems.
View Article and Find Full Text PDF

Background: Diabetes mellitus (DM) is one of the largest global health emergencies of the 21st century. In recent years, its connection with environmental pollutants, such as bisphenol A (BPA), has been demonstrated; consequently, new structurally similar molecules are used to replace BPA in the plastics industry (BPS, BPF and BPAF).

Aim: To carry out a systematic review to allow coherent evaluation of the state of the art.

View Article and Find Full Text PDF

(1) Background: Early response after acute myocardial infarction (AMI) prevents extensive cardiac necrosis, in which inflammation resolution, including expression of anti-inflammatory interleukin-10 (IL-10), may play a key role. (2) Methods: We synthesized NIL10, a micelle-based nanoparticle, to target IL-10 receptor in mice and pigs subjected to AMI. (3) Results: Administration of NIL10 induced cardiac protection of wild-type and IL-10 knockout mice and pigs subjected to AMI.

View Article and Find Full Text PDF

Background: Rapid screening and accurate diagnosis of acute myocardial infarction are critical to reduce the progression of myocardial necrosis, in which proteolytic degradation of myocardial extracellular matrix plays a major role. In previous studies, we found that targeting the extracellular matrix metalloprotease inducer (EMMPRIN) by injecting nanoparticles conjugated with the specific EMMPRIN-binding peptide AP9 significantly improved cardiac function in mice subjected to ischemia/reperfusion.

Methods: In a porcine model of coronary ischemia/reperfusion, we tested the theragnostic effects of administering 0.

View Article and Find Full Text PDF
Article Synopsis
  • BPA is a harmful chemical that affects many parts of the body and can cause cells in blood vessels to die.
  • Researchers found that BPA can also make these cells age fast, indicated by certain proteins (p16, p21, CHOP) being more active when exposed to BPA.
  • When treated with a protective substance (NAC), the bad effects of BPA on the cells were reduced, suggesting that BPA might cause heart problems by speeding up cell aging.
View Article and Find Full Text PDF

In response to cardiac ischemia/reperfusion, proteolysis mediated by extracellular matrix metalloproteinase inducer (EMMPRIN) and its secreted ligand cyclophilin-A (CyPA) significantly contributes to cardiac injury and necrosis. Here, we aimed to investigate if, in addition to the effect on the funny current (I(f)), Ivabradine may also play a role against cardiac necrosis by reducing EMMPRIN/CyPA-mediated cardiac inflammation. In a porcine model of cardiac ischemia/reperfusion (IR), we found that administration of 0.

View Article and Find Full Text PDF

Introduction And Objectives: Ivabradine reduces heart rate by blocking the I(f) current and preserves blood pressure and stroke volume through unknown mechanisms. Caveolin-3 protects the heart by forming protein complexes with several proteins, including extracellular matrix (ECM)-metalloproteinase-inducer (EMMPRIN) and hyperpolarization-activated cyclic nucleotide-gated channel 4 (HN4), a target of ivabradine. We hypothesized that ivabradine might also exert cardioprotective effects through inhibition of ECM degradation.

View Article and Find Full Text PDF

Ivabradine can reduce heart rate through inhibition of the current I() by still unexplored mechanisms. In a porcine model of ischemia reperfusion (IR), we found that treatment with 0.3 mg/kg Ivabradine increased plasma release of microvesicles (MVs) over Placebo, as detected by flow cytometry of plasma isolated from pigs 7 days after IR, in which a tenfold increase of Extracellular Matrix Metalloproteinase Inducer (EMMPRIN) containing (both high and low-glycosylated) MVs, was detected in response to Ivabradine.

View Article and Find Full Text PDF

Toll-like receptor 4 (TLR4) contributes to the pathogenesis of coronary ischemia/reperfusion (IR). To test whether the new TLR4 antagonist, ApTOLL, may prevent coronary IR damage, we administered 0.078 mg/kg ApTOLL or Placebo in pigs subjected to IR, analyzing the levels of cardiac troponins, matrix metalloproteinases, pro-, and anti-inflammatory cytokines, heart function, and tissue integrity over a period of 7 days after IR.

View Article and Find Full Text PDF

A new familial dilated cardiomyopathy (FDCM) was found related to mutations in gene. MicroRNAs (miRNAs) represent new targets of FDCM, although no studies have assessed clinical association between Bcl2-associated athanogene 3 (BAG3)-related DCM and miRNAs. Here, we studied whether a clinical association between BAG3-related FDCM and circulating miRNAs may have diagnostic and prognostic value in a small cohort of familial related individuals carrying a BAG3 mutation (BAG3+) and/or diagnosed of dilated cardiomyopathy (DCM) (DCM+).

View Article and Find Full Text PDF

Lack of endothelial nitric oxide causes endothelial dysfunction and circulating monocyte infiltration, contributing to systemic atheroma plaque formation in arterial territories. Among the different inflammatory products, macrophage-derived foam cells and smooth muscle cells synthesize matrix metalloproteinases (MMPs), playing a pivotal role in early plaque formation and enlargement. We found increased levels of MMP-9 and MMP-13 in human endarterectomies with advanced atherosclerosis, together with significant amounts of extracellular matrix (ECM) metalloproteinase inducer EMMPRIN.

View Article and Find Full Text PDF

Background: Acute heart failure patients could benefit from heart rate reduction, as myocardial consumption and oxidative stress are related to tachycardia. Ivabradine could have a clinical role attenuating catecholamine-induced tachycardia. The aim of this study was to evaluate hemodynamic effects of ivabradine in a swine model of acute heart failure.

View Article and Find Full Text PDF

Endothelial senescence-associated with aging or induced prematurely in pathological situations, such as diabetes, is a first step in the development of Cardiovascular Disease (CVDs) and particularly inflammatory cardiovascular diseases. The main mechanism that links endothelial senescence and the progression of CVDs is the production of altered Extracellular Vesicles (EVs) by senescent endothelial cells among them, Microvesicles (MVs). MVs are recognized as intercellular signaling elements that play a key role in regulating tissue homeostasis.

View Article and Find Full Text PDF

Atherosclerosis, a chronic inflammatory disease that causes the most heart attacks and strokes in humans, is the leading cause of death in the developing world; its principal clinical manifestation is coronary artery disease. The development of atherosclerosis is attributed to the aging process itself (biological aging) and is also associated with the development of chronic diseases (premature aging). Both aging processes produce an increase in risk factors such as oxidative stress, endothelial dysfunction and proinflammatory cytokines (oxi-inflamm-aging) that might generate endothelial senescence associated with damage in the vascular system.

View Article and Find Full Text PDF

Carbamylation is a post-translational modification of proteins that may partake in the oxidative stress-associated cell damage, and its increment has been recently proposed as a "hallmark of aging". The molecular mechanisms associated with aging are related to an increased release of free radicals. We have studied whether carbamylated proteins from the peripheral blood of healthy subjects are related to oxidative damage and aging, taking into account the gender and the immune profile of the subjects.

View Article and Find Full Text PDF