Publications by authors named "Rachael Deis"

Many animals produce vivid colors by reflecting and amplifying light with stacked guanine crystals within membrane-bound organelles called iridosomes. While the presence of guanine crystals in iridosomes is well documented, the mechanisms facilitating the accumulation of water-insoluble guanine and driving its crystallization remain unclear. Here we used cryo-electron microscopy, live-cell pH imaging, pharmacological perturbations and spectroscopy to study iridosome maturation in zebrafish.

View Article and Find Full Text PDF

Vertebrate oocyte polarity has been observed for two centuries and is essential for embryonic axis formation and germline specification, yet its underlying mechanisms remain unknown. In oocyte polarization, critical RNA-protein (RNP) granules delivered to the oocyte's vegetal pole are stored by the Balbiani body (Bb), a membraneless organelle conserved across species from insects to humans. However, the mechanisms of Bb formation are still unclear.

View Article and Find Full Text PDF

Organisms evolve mechanisms that regulate the properties of biogenic crystals to support a wide range of functions, from vision and camouflage to communication and thermal regulation. Yet, the mechanism underlying the formation of diverse intracellular crystals remains enigmatic. Here we unravel the biochemical control over crystal morphogenesis in zebrafish iridophores.

View Article and Find Full Text PDF
Article Synopsis
  • Animals use intracellular guanine crystals to create vibrant colors for communication, camouflage, and temperature regulation through light interference.
  • Research focused on zebrafish showed that norepinephrine-induced color changes involve a coordinated 20° tilt of these crystal arrays, affecting their packing and how light interacts with them.
  • The study uncovered that microtubules and the protein dynein play critical roles in modifying crystal angles, while intracellular cAMP also regulates the color change dynamics.
View Article and Find Full Text PDF

Controlling the morphology of crystalline materials is challenging, as crystals have a strong tendency toward thermodynamically stable structures. Yet, organisms form crystals with distinct morphologies, such as the plate-like guanine crystals produced by many terrestrial and aquatic species for light manipulation. Regulation of crystal morphogenesis was hypothesized to entail physical growth restriction by the surrounding membrane, combined with fine-tuned interactions between organic molecules and the growing crystal.

View Article and Find Full Text PDF

A hallmark of meiosis is chromosomal pairing, which requires telomere tethering and rotation on the nuclear envelope through microtubules, driving chromosome homology searches. Telomere pulling toward the centrosome forms the "zygotene chromosomal bouquet." Here, we identified the "zygotene cilium" in oocytes.

View Article and Find Full Text PDF

The oral epithelium represents a major interface between an organism and its external environment. Improving this barrier at the molecular level can provide an organism added protection from microbial-based diseases. Barrier function of the Gie-3B11-human-gingival-epithelial-cell-culture model is enhanced by the micronutrients zinc, quercetin, retinoic acid, and acetyl-11-keto-β-boswellic acid, as observed by a concentration-dependent increase in transepithelial electrical resistance and a decrease in transepithelial C-d-mannitol permeability.

View Article and Find Full Text PDF

Human semen has the potential to modulate the epithelial mucosal tissues it contacts, as seminal plasma (SP) is recognized to contain both pro- and anti-barrier components, yet its effects on epithelial barrier function are largely unknown. We addressed the role of human SP when exposed to the basal-lateral epithelial surface, a situation that would occur clinically with prior mechanical or disease-related injury of the human epithelial mucosal cell layers in contact with semen. The action of SP on claudins-2, -4, -5, and -7 expression, as well as on a target epithelium whose basolateral surface has been made accessible to SP, showed upregulation of claudins-4 and -5 in CACO-2 human epithelial cell layers, despite broad variance in SP-induced modulation of transepithelial electrical resistance and mannitol permeability.

View Article and Find Full Text PDF