Publications by authors named "Purna Krishnamurthy"

Abstract: The efficacy of chimeric antigen receptor T cells (CART) in solid tumors is limited by immune inhibition. In our study, we observed that effector cytokines mediated the upregulation of the PD-L1 immune checkpoint in primary glioblastoma. To offset the PD-L1 inhibitory signal, we engineered PD-1 checkpoint reversal receptors (CPR) with a CD28 or 41BB costimulatory endodomain and coexpressed them with a first-generation or a CD28-containing second-generation HER2-specific CAR (CPR/CART) using bicistronic vectors.

View Article and Find Full Text PDF

Obesity and type 2 diabetes are associated with metabolic defects and adipose tissue inflammation. Foxp3 regulatory T cells (Tregs) control tissue homeostasis by counteracting local inflammation. However, if and how T cells interlink environmental influences with adipocyte function remains unknown.

View Article and Find Full Text PDF

Poly-ADP ribose polymerase-14 (PARP14 or ARTD8) was initially identified as a transcriptional co-activator for signal transducer and activator of transcription 6 (Stat6), where the presence of interleukin-4 (IL-4) and activated Stat6 induces the enzymatic activity of PARP14 that promotes T helper type 2 differentiation and allergic airway disease. To further our understanding of PARP14 in allergic disease, we studied the function of PARP14 in allergic inflammation of skin using mice that express constitutively active Stat6 in T cells (Stat6VT) and develop spontaneous inflammation of the skin. We mated Stat6VT mice to Parp14 mice and observed that approximately 75% of the Stat6VT × Parp14 mice develop severe atopic dermatitis (AD)-like lesions, compared with about 50% of Stat6VT mice, and have increased morbidity compared with Stat6VT mice.

View Article and Find Full Text PDF

Atopic dermatitis (AD) is a chronic inflammatory skin disease induced by a complex interaction between susceptibility genes encoding skin barrier components and environmental allergen exposure that results in type 2 cytokine production. Although genetic lesions in either component can be risk factors for disease in patients, whether these pathways interact in the development of AD is not clear. To test this, we mated mice with T-cell specific expression of constitutively active Stat6 (Stat6VT) that spontaneously develop allergic skin inflammation with Flaky tail (Ft) mice that have mutations in Flg and Tmem79 genes that each affect skin barrier function.

View Article and Find Full Text PDF

Allergic inflammation requires the orchestration of altered gene expression in the target tissue and in the infiltrating immune cells. The transcription factor STAT6 is critical in activating cytokine gene expression and cytokine signaling both in the immune cells and in target tissue cells including airway epithelia, keratinocytes and esophageal epithelial cells. STAT6 is activated by the cytokines IL-4 and IL-13 to mediate the pathogenesis of allergic disorders such as asthma, atopic dermatitis, food allergy and eosinophilic esophagitis (EoE).

View Article and Find Full Text PDF

Background: Atopic dermatitis (AD) is characterized by intense pruritis and is a common childhood inflammatory disease. Many factors are known to affect AD development, including the pleiotropic cytokine IL-4. Yet little is known regarding the direct effects of IL-4 on keratinocyte function.

View Article and Find Full Text PDF

Atherosclerosis is a chronic inflammatory process that leads to plaque formation in large and medium sized vessels. T helper 1 (Th1) cells constitute the majority of plaque infiltrating pro-atherogenic T cells and are induced via IFNγ-dependent activation of T-box (Tbet) and/or IL-12-dependent activation of signal transducer and activator of transcription 4 (STAT4). We thus aimed to define a role for STAT4 in atherosclerosis.

View Article and Find Full Text PDF

Transcription factors are critical determinants of T helper cell fate and require a variety of co-factors to activate gene expression. We previously identified the ADP ribosyl-transferase poly-ADP-ribosyl polymerase 14 (PARP-14) as a co-factor of signal transducer and activator of transcription (STAT) 6 that is important in B-cell and T-cell responses to interleukin-4, particularly in the differentiation of T helper type 2 (Th2) cells. However, whether PARP-14 functions during the development of other T helper subsets is not known.

View Article and Find Full Text PDF

Breast cancer metastasizes to bone, visceral organs, and/or brain depending on the subtype, which may involve activation of a host organ-specific signaling network in metastatic cells. To test this possibility, we determined gene expression patterns in MDA-MB-231 cells and its mammary fat pad tumor (TMD-231), lung-metastasis (LMD-231), bone-metastasis (BMD-231), adrenal-metastasis (ADMD-231) and brain-metastasis (231-BR) variants. When gene expression between metastases was compared, 231-BR cells showed the highest gene expression difference followed by ADMD-231, LMD-231, and BMD-231 cells.

View Article and Find Full Text PDF