Publications by authors named "Prashanth Anamthathmakula"

: Exsanguination is a leading cause of preventable death in military and civilian settings due to extensive blood loss and hemorrhagic shock, which trigger systemic effects such as impaired tissue perfusion, hypoxia, inflammation, and multi-organ dysfunction. Standard resuscitation restores blood volume but fails to address critical aspects of hemorrhagic shock, including inflammation, coagulopathy, and reperfusion injury. To address these limitations, novel phospholipid nanoparticle (PNP)-based resuscitative fluids, VBI-S and VBI-1, were developed to modulate nitric oxide (NO) levels, improving hemodynamic stability, tissue oxygenation, and reducing inflammatory injury.

View Article and Find Full Text PDF

Semen liquefaction is a postejaculation process that transforms semen from a gel-like (coagulated) form to a water-like consistency (liquefied). This process is primarily regulated by serine proteases from the prostate gland, most prominently, prostate-specific antigen (PSA; KLK3). Inhibiting PSA activity has the potential to impede liquefaction of human semen, presenting a promising target for nonhormonal contraception in the female reproductive tract.

View Article and Find Full Text PDF

Background: Since the 1990's attempts to favorably modulate nitric oxide (NO) have been unsuccessful. We hypothesized that because NO is lipophilic it would preferentially localize into intravascularly infused hydrophobic nanoparticles, thereby reducing its bioavailability and adverse effects without inhibiting its production. We aimed to determine the efficacy and safety of intravenous infusion of a fluid comprised of hydrophobic phospholipid nanoparticles (VBI-S) that reversibly absorb NO in the treatment of hypotension of patients in severe septic shock.

View Article and Find Full Text PDF

Ciliary action performs a critical role in the oviduct (Fallopian tube) during pregnancy establishment through sperm and egg transport. The disruption of normal ciliary function in the oviduct affects oocyte pick-up and is a contributing factor to female infertility. Estrogen is an important regulator of ciliary action in the oviduct and promotes ciliogenesis in several species.

View Article and Find Full Text PDF

The aromatase-Cre recombinase (Cyp19-Cre) transgenic mouse model has been extensively used for placenta-specific gene inactivation. In a pilot study, we observed unexpected phenotypes using this mouse strain, which prompted an extensive characterization of Cyp19-Cre placental phenotypes using ROSA transgenic reporter mice. The two strains were mated to generate bi-transgenic Cyp19-Cre;ROSA mice following a standard transgenic breeding scheme, and placental and fetal tissues were analyzed on embryonic day 17.

View Article and Find Full Text PDF

Prostate-specific antigen (PSA) is a prostate-specific serine protease enzyme that hydrolyzes gel-forming proteins (semenogelins) and changes the semen from gel-like to watery viscosity, a process called semen liquefaction. Highly viscous semen and abnormal liquefaction reduce sperm motility and contribute to infertility. Previously, we showed that nonspecific serine protease inhibitor (AEBSF) prevented proteolytic degradation of semenogelin in mice.

View Article and Find Full Text PDF

The mammalian oviduct is a dynamic organ where important events such as final maturation of oocytes, transport of gametes, sperm capacitation, fertilization, embryo development, and transport take place. Prostaglandin-endoperoxide synthase 2 (PTGS2), also known as cyclooxygenase 2 (COX-2), is the rate-limiting enzyme in the production of prostaglandins (PGs) and plays an essential role during early pregnancy, including ovulation, fertilization, implantation, and decidualization. Even though the maternal-embryo communication originates in the oviduct, not many studies have systemically investigated PTGS2 signaling during early development.

View Article and Find Full Text PDF

Semen liquefaction is a proteolytic process where a gel-like ejaculated semen becomes watery due to the enzymatic activity of prostate-derived serine proteases in the female reproductive tract. The liquefaction process is crucial for the sperm to gain their motility and successful transport to the fertilization site in Fallopian tubes (or oviducts in animals). Hyperviscous semen or failure in liquefaction is one of the causes of male infertility.

View Article and Find Full Text PDF

Inhibition of the sperm transport process in the female reproductive tract could lead to infertility. We previously showed that a pan-serine protease inhibitor, 4-(2-aminoethyl)benzenesulfonyl fluoride (AEBSF), blocked semen liquefaction in vivo and resulted in a drastic decrease in the number of sperm in the oviduct of female mice. In this study, we used a mouse model to test the efficacy of AEBSF as a reversible contraceptive, a sperm motility inhibitor, and a spermicide.

View Article and Find Full Text PDF

The oviduct (known as the fallopian tube in humans) is the site for fertilization and pre-implantation embryo development. Female steroid hormones, estrogen and progesterone, are known to modulate the morphology and function of cells in the oviduct. In this review, we focus on the actions of estrogen and progesterone on secretory, ciliated, and muscle cell functions and morphologies during fertilization, pre-implantation embryo development, and embryo transport in humans, laboratory rodents and farm animals.

View Article and Find Full Text PDF

The elevated level of Steroidogenic Factor 1 (Nr5a1, Sf-1) expression in the male gonadal development pathway, post sex determination, implies a vital role in testis gonadal differentiation. In this study we generated Sertoli cell-specific Nr5a1 KO mice (SC-SF-1) at E14.5, which coincides with testis development post sex determination, using the Amh-Cre mouse model.

View Article and Find Full Text PDF

Background: Circulating estrogen (E2) levels are high throughout pregnancy and increase towards term, however its local tissue specific actions vary across gestation. For example, myometrial E2 regulated uterotonic action is disabled until term, whereas it's proliferative function is maintained in the breast. We have identified gestationally regulated splicing events, mediated by hnRNPG and modulated by E2 that generate alternatively spliced estrogen receptor alpha (ERα) variants (ERΔ7 and ERα46) in the myometrium.

View Article and Find Full Text PDF

Pharmacological studies have suggested hypothalamic phosphodiesterase-3B to mediate leptin and insulin action in regulation of energy homeostasis. Whereas Pde3b-null mice show altered energy homeostasis, it is unknown whether this is due to ablation of Pde3b in the hypothalamus. Thus, to address the functional significance of hypothalamic phosphodiesterase-3B, we used Pde3bflox/flox and Nkx2.

View Article and Find Full Text PDF

The prevention of apoptotic caspase 3 activation through biological preconditioning, mediated through the modulation of the unfolded protein response has been demonstrated to ameliorate multiple pathophysiologies. The maintenance of non-apoptotic caspase 3 activity by the unfolded protein response within the pregnant uterus has previously been proven to be critical in inhibiting uterine myocyte contractility during pregnancy. Here we report that the pregnant uterus utilizes an unfolded protein response-preconditioning paradigm to conserve myometrial caspase 3 in a non-apoptotic state in order to effectively inhibit uterine contractility thereby preventing the onset of preterm labor.

View Article and Find Full Text PDF

Background: Insulin action in the hypothalamus plays a critical role in the regulation of energy homeostasis, yet the intracellular signaling mechanisms mediating insulin action are incompletely understood. Although phosphodiesterase 3B (PDE3B) mediates insulin action in the adipose tissue and it is highly expressed in the hypothalamic areas implicated in energy homeostasis, its role, if any, in mediating insulin action in the hypothalamus is unknown. We tested the hypothesis that insulin action in the hypothalamus is mediated by PDE3B.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers studied how a protein called CASP3 helps keep the uterus relaxed during pregnancy.
  • They found that stress in cells can change how the uterus contracts, affecting how long a pregnancy lasts.
  • Using a special treatment, they were able to reduce preterm births caused by too much cell stress.
View Article and Find Full Text PDF

Hypothalamic neurons expressing neuropeptide Y (NPY) and agouti related-protein (AgRP) are critical regulators of feeding behavior and body weight, and transduce the action of many peripheral signals including leptin and insulin. However, intracellular signaling molecules involved in regulating NPY/AgRP neuronal activity are incompletely understood. Since phosphodiesterase-3B (PDE3B) mediates the hypothalamic action of leptin and insulin on feeding, and is expressed in NPY/AgRP neurons, PDE3B could play a significant role in regulating NPY/AgRP neuronal activity.

View Article and Find Full Text PDF

Androgens signal through the androgen receptor (AR) to regulate male secondary sexual characteristics, reproductive tract development, prostate function, sperm production, bone and muscle mass as well as body hair growth among other functions. We developed a transgenic mouse model in which endogenous AR expression was replaced by a functionally modified AR transgene. A bacterial artificial chromosome (BAC) was constructed containing all AR exons and introns plus 40 kb each of 5' and 3' regulatory sequence.

View Article and Find Full Text PDF

Background: Previously, we reported that vitamin A-enriched diet (129 mg/kg diet) intake reduces the adiposity development in obese rats of WNIN/Ob strain. Here, we hypothesize that dose lesser than 129 mg of vitamin A/kg diet would also be effective in ameliorating the development of obesity in these rats.

Methods: Five-month-old male lean and obese rats designated as A & B were divided into four subgroups (I, II, III and IV) consisting of 8 rats from each phenotype and received diets containing 2.

View Article and Find Full Text PDF

Aim: Vitamin A plays a major role in lipid metabolism. Previously, we reported that chronic vitamin A feeding (129 mg/kg) for two months normalized the abnormally high plasma HDL-cholesterol (HDL-C) levels in hypercholesterolemic obese rats by upregulating the hepatic scavenger receptor class B type 1 (SR-BI) expression. In this report, we hypothesize that the administration of a dose less than 129 mg of vitamin A/kg would also be effective in lowering the plasma HDL-C levels in these rats.

View Article and Find Full Text PDF

11 β-hydroxysteroid dehydrogenase type 1 (11 β-HSD1) catalyzes the conversion of inactive glucocorticoids to active glucocorticoids and plays an important role in the development of obesity and metabolic syndrome. 11 β-HSD1 activity is lower in liver and higher in omental adipose tissue of obese rodent models like obese zucker rats, Ob/Ob and db/db mice. Here, we report the 11 β-HSD1 activity in liver and adipose tissue of lean and obese rats of WNIN/Ob strain, a new genetic rat model of obesity.

View Article and Find Full Text PDF