Trends Ecol Evol
January 2024
While bee-angiosperm mutualisms are widely recognized as foundational partnerships that have shaped the diversity and structure of terrestrial ecosystems, these ancient mutualisms have been underpinned by 'silent third partners': microbes. Here, we propose reframing the canonical bee-angiosperm partnership as a three-way mutualism between bees, microbes, and angiosperms. This new conceptualization casts microbes as active symbionts, processing and protecting pollen-nectar provisions, consolidating nutrients for bee larvae, enhancing floral attractancy, facilitating plant fertilization, and defending bees and plants from pathogens.
View Article and Find Full Text PDFDeveloping bees derive significant benefits from the microbes present within their guts and fermenting pollen provisions. External microbial symbionts (exosymbionts) associated with larval diets may be particularly important for solitary bees that suffer reduced fitness when denied microbe-colonized pollen.To investigate whether this phenomenon is generalizable across foraging strategy, we examined the effects of exosymbiont presence/absence across two solitary bee species, a pollen specialist and generalist.
View Article and Find Full Text PDFThe pollen stores of bumble bees host diverse microbiota that influence overall colony fitness. Yet, the taxonomic identity of these symbiotic microbes is relatively unknown. In this descriptive study, we characterized the microbial community of pollen provisions within captive-bred bumble bee hives obtained from two commercial suppliers located in North America.
View Article and Find Full Text PDFAs pollen and nectar foragers, bees have long been considered strictly herbivorous. Their pollen provisions, however, are host to abundant microbial communities, which feed on the pollen before and/or while it is consumed by bee larvae. In the process, microbes convert pollen into a complex of plant and microbial components.
View Article and Find Full Text PDFTeeming within pollen provisions are diverse communities of symbiotic microbes, which provide a variety of benefits to bees. Microbes themselves may represent a major dietary resource for developing bee larvae. Despite their apparent importance in sustaining bee health, evidence linking pollen-borne microbes to larval health is currently lacking.
View Article and Find Full Text PDFAlthough solitary bees provide crucial pollination services for wild and managed crops, this species-rich group has been largely overlooked in pesticide regulation studies. The risk of exposure to fungicide residues is likely to be especially high if the spray occurs on, or near host plants while the bees are collecting pollen to provision their nests. For species of Osmia that consume pollen from a select group of plants (oligolecty), the inability to use pollen from non-host plants can increase their risk factor for fungicide-related toxicity.
View Article and Find Full Text PDFGrowers often use fungicide sprays during bloom to protect crops against disease, which exposes bees to fungicide residues. Although considered "bee-safe," there is mounting evidence that fungicide residues in pollen are associated with bee declines (for both honey and bumble bee species). While the mechanisms remain relatively unknown, researchers have speculated that bee-microbe symbioses are involved.
View Article and Find Full Text PDFDetritivory is the dominant trophic paradigm in most terrestrial, aquatic, and marine ecosystems, yet accurate measurement of consumer trophic position within detrital (="brown") food webs has remained unresolved. Measurement of detritivore trophic position is complicated by the fact that detritus is suffused with microbes, creating a detrital complex of living and nonliving biomass. Given that microbes and metazoans are trophic analogues of each other, animals feeding on detrital complexes are ingesting other detritivores (microbes), which should elevate metazoan trophic position and should be rampant within brown food webs.
View Article and Find Full Text PDFThe differential discrimination of nitrogen isotopes (N/N) within amino acids in consumers and their diets has been routinely used to estimate organismal tropic position (TP). Analogous isotopic discrimination can occur within plants, particularly in organs lacking chloroplasts. Such discrimination likely arises from the catabolic deamination of amino acids, resulting in a numerical elevation of estimated TP, within newly synthesized biomass.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 2017
Within areas of comparable atmospheric mercury deposition rates methylmercury burden in largemouth bass populations vary significantly between regulated and unregulated rivers. To investigate if trophic dynamics strongly influenced pollutant body load, we sampled largemouth bass from two adjacent rivers, one regulated and one unregulated, and applied a suite of biochemical and stable isotope assays to compare their trophic dynamics. Total mercury burden in the bass from the unregulated Sipsey River (Elrod, AL, USA) and the regulated Black Warrior River (Demopolis, AL, USA) averaged 0.
View Article and Find Full Text PDF