Proc Natl Acad Sci U S A
August 2025
Selected proteins containing an N-terminal cysteine (Nt-Cys) are subjected to rapid, O-dependent proteolysis via the Cys/Arg-branch of the N-degron pathway. Cysteine dioxygenation is catalyzed in mammalian cells by 2-aminoethanethiol dioxygenase (ADO), an enzyme that manifests extreme O sensitivity. The canonical substrates of this pathway in mammalia are the regulators of G-protein signaling 4, 5, and 16, as well as interleukin-32.
View Article and Find Full Text PDFHomeostatic control of cellular oxygen availability is a crucial feature of all eukaryotic life, and central to this process is the ability to sense oxygen across a broad range of concentrations and time scales. Much of our understanding of the molecular mechanisms underpinning oxygen sensing has been obtained using cell culture models, yet the biophysical properties of oxygen combined with the complex nature of cellular O consumption can make the interpretation of such data difficult. In this commentary, we have outlined some of the main problems encountered in measuring and manipulating cell monolayer oxygenation in vitro, and contextualised them using both historical and contemporary examples.
View Article and Find Full Text PDFPhysiology (Bethesda)
September 2025
More than 100 years after the original descriptions of altitude adaptation, it is now clear that many of these responses are mediated by a specific isoform of the transcription factor hypoxia-inducible factor (HIF)-2α. Here, we review this work, including connectivity with the oxygen chemosensitive response itself and with paraganglioma, a tumor often affecting chemosensitive tissues.
View Article and Find Full Text PDFClear cell kidney cancers are characterized both by conserved oncogenic driver events and by marked intratumor genetic and phenotypic heterogeneity, which help drive tumor progression, metastasis, and resistance to therapy. How these are reflected in transcriptional programs within the cancer and stromal cell components remains an important question with the potential to drive novel therapeutic approaches to treating cancer. To better understand these programs, we perform single-cell transcriptomics on 75 multi-regional biopsies from kidney tumors and normal kidney.
View Article and Find Full Text PDFJ Clin Invest
August 2024
The study of transcription factors that determine specialized neuronal functions has provided invaluable insights into the physiology of the nervous system. Peripheral chemoreceptors are neurone-like electrophysiologically excitable cells that link the oxygen concentration of arterial blood to the neuronal control of breathing. In the adult, this oxygen chemosensitivity is exemplified by type I cells of the carotid body, and recent work has revealed one isoform of the hypoxia-inducible transcription factor (HIF), HIF-2α, as having a nonredundant role in the development and function of that organ.
View Article and Find Full Text PDFOxygen homeostasis is maintained in plants and animals by O-sensing enzymes initiating adaptive responses to low O (hypoxia). Recently, the O-sensitive enzyme ADO was shown to initiate degradation of target proteins RGS4/5 and IL32 via the Cysteine/Arginine N-degron pathway. ADO functions by catalysing oxidation of N-terminal cysteine residues, but despite multiple proteins in the human proteome having an N-terminal cysteine, other endogenous ADO substrates have not yet been identified.
View Article and Find Full Text PDFUnlabelled: Defining the initial events in oncogenesis and the cellular responses they entrain, even in advance of morphologic abnormality, is a fundamental challenge in understanding cancer initiation. As a paradigm to address this, we longitudinally studied the changes induced by loss of the tumor suppressor gene von Hippel Lindau (VHL), which ultimately drives clear cell renal cell carcinoma. Vhl inactivation was directly coupled to expression of a tdTomato reporter within a single allele, allowing accurate visualization of affected cells in their native context and retrieval from the kidney for single-cell RNA sequencing.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 2024
Hypoxia signaling influences tumor development through both cell-intrinsic and -extrinsic pathways. Inhibiting hypoxia-inducible factor (HIF) function has recently been approved as a cancer treatment strategy. Hence, it is important to understand how regulators of HIF may affect tumor growth under physiological conditions.
View Article and Find Full Text PDFIn animals, adaptation to changes in cellular oxygen levels is coordinated largely by 2-oxoglutarate-dependent prolyl-hydroxylase domain (PHD) dioxygenase family members, which regulate the stability of their hypoxia-inducible factor (HIF) substrates to promote expression of genes that adapt cells to hypoxia. Recently, 2-aminoethanethiol dioxygenase (ADO) was identified as a novel O-sensing enzyme in animals. Through N-terminal cysteine dioxygenation and the N-degron pathway, ADO regulates the stability of a set of non-transcription factor substrates; the regulators of G-protein signaling 4, 5.
View Article and Find Full Text PDFLife Sci Alliance
April 2023
Hypoxia-inducible factor (HIF) and aryl hydrocarbon receptor (AHR) are members of the bHLH-PAS family of transcription factors that underpin cellular responses to oxygen and to endogenous and exogenous ligands, respectively, and have central roles in the pathogenesis of renal cancer. Composed of heterodimers, they share a common HIF-1β/ARNT subunit and similar DNA-binding motifs, raising the possibility of crosstalk between the two transcriptional pathways. Here, we identify both general and locus-specific mechanisms of interaction between HIF and AHR that act both antagonistically and cooperatively.
View Article and Find Full Text PDFActivation of cellular hypoxia pathways, orchestrated by HIF (hypoxia-inducible factor) transcription factors, is a common feature of multiple tumor types, resulting from microenvironment factors and oncogenic mutation. Although they help drive many of the "hallmarks" of cancer and are associated with poor outcome and resistance to therapy, the transcriptional targets of HIF vary considerably depending on the cell type. By integrating 72 genome-wide assays of HIF binding and transcriptional regulation from multiple cancer types, we define a consensus set of 48 HIF target genes that is highly conserved across cancer types and cell lineages.
View Article and Find Full Text PDFPhysician-scientists have epitomized the blending of deep, rigorous impactful curiosity with broad attention to human health for centuries. While we aspire to prepare all physicians with an appreciation for these skills, those who apply them to push the understanding of the boundaries of human physiology and disease, to advance treatments, and to increase our knowledge base in the arena of human health can fulfill an essential space for our society, economies, and overall well-being. Working arm in arm with basic and translational scientists as well as expert clinicians, as peers in both groups, this career additionally serves as a bridge to facilitate the pace and direction of research that ultimately impacts health.
View Article and Find Full Text PDFNat Struct Mol Biol
September 2022
Hypoxia inducible factor (HIF) and mammalian target of rapamycin (mTOR) pathways orchestrate responses to oxygen and nutrient availability. These pathways are frequently dysregulated in cancer, but their interplay is poorly understood, in part because of difficulties in simultaneous measurement of global and mRNA-specific translation. Here, we describe a workflow for measurement of ribosome load of mRNAs resolved by their transcription start sites (TSSs).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2022
The Jumonji domain-containing protein JMJD6 is a 2-oxoglutarate-dependent dioxygenase associated with a broad range of biological functions. Cellular studies have implicated the enzyme in chromatin biology, transcription, DNA repair, mRNA splicing, and cotranscriptional processing. Although not all studies agree, JMJD6 has been reported to catalyze both hydroxylation of lysine residues and demethylation of arginine residues.
View Article and Find Full Text PDFHypoxemia is a defining feature of acute respiratory distress syndrome (ARDS), an often-fatal complication of pulmonary or systemic inflammation, yet the resulting tissue hypoxia, and its impact on immune responses, is often neglected. In the present study, we have shown that ARDS patients were hypoxemic and monocytopenic within the first 48 h of ventilation. Monocytopenia was also observed in mouse models of hypoxic acute lung injury, in which hypoxemia drove the suppression of type I interferon signaling in the bone marrow.
View Article and Find Full Text PDFThe aspariginyl hydroxylase human factor inhibiting hypoxia-inducible factor (FIH) is an important regulator of the transcriptional activity of hypoxia-inducible factor. FIH also catalyzes the hydroxylation of asparaginyl and other residues in ankyrin repeat domain-containing proteins, including apoptosis stimulating of p53 protein (ASPP) family members. ASPP2 is reported to undergo a single FIH-catalyzed hydroxylation at Asn-986.
View Article and Find Full Text PDFIron deficiency impairs skeletal muscle metabolism. The underlying mechanisms are incompletely characterised, but animal and human experiments suggest the involvement of signalling pathways co-dependent upon oxygen and iron availability, including the pathway associated with hypoxia-inducible factor (HIF). We performed a prospective, case-control, clinical physiology study to explore the effects of iron deficiency on human metabolism, using exercise as a stressor.
View Article and Find Full Text PDFEndocr Relat Cancer
October 2021
Despite a general role for the HIF hydroxylase system in cellular oxygen sensing and tumour hypoxia, cancer-associated mutations of genes in this pathway, including PHD2, PHD1, EPAS1 (encoding HIF-2α) are highly tissue-restricted, being observed in pseudohypoxic pheochromocytoma and paraganglioma (PPGL) but rarely, if ever, in other tumours. In an effort to understand that paradox and gain insights into the pathogenesis of pseudohypoxic PPGL, we constructed mice in which the principal HIF prolyl hydroxylase, Phd2, is inactivated in the adrenal medulla using TH-restricted Cre recombinase. Investigation of these animals revealed a gene expression pattern closely mimicking that of pseudohypoxic PPGL.
View Article and Find Full Text PDFHypoxia-inducible transcription factors (HIFs) are fundamental to cellular adaptation to low oxygen levels, but it is unclear how they interact with chromatin and activate their target genes. Here, we use genome-wide mutagenesis to identify genes involved in HIF transcriptional activity, and define a requirement for the histone H3 lysine 4 (H3K4) methyltransferase SET1B. SET1B loss leads to a selective reduction in transcriptional activation of HIF target genes, resulting in impaired cell growth, angiogenesis and tumor establishment in SET1B-deficient xenografts.
View Article and Find Full Text PDFCOVID-19, caused by the novel coronavirus SARS-CoV-2, is a global health issue with more than 2 million fatalities to date. Viral replication is shaped by the cellular microenvironment, and one important factor to consider is oxygen tension, in which hypoxia inducible factor (HIF) regulates transcriptional responses to hypoxia. SARS-CoV-2 primarily infects cells of the respiratory tract, entering via its spike glycoprotein binding to angiotensin-converting enzyme 2 (ACE2).
View Article and Find Full Text PDF