Publications by authors named "Per O J Hall"

Up to 20% of prokaryotic organisms in the oceans are estimated to die every day due to viral infection and lysis. Viruses can therefore alter microbial diversity, community structure, and biogeochemical processes driven by these organisms. Cyanophages are viruses that infect and lyse cyanobacterial cells, adding bioavailable carbon and nutrients into the environment.

View Article and Find Full Text PDF

The aim of the study was to assess the effect of seaweed cultivation on the coastal environment. We analysed a multitude of environmental parameters using an asymmetrical before after control impact (BACI) design, comparing the seaweed farm (impact) with multiple unaffected locations (controls). The seaweed farm had a significant positive effect on benthic infauna (p<0.

View Article and Find Full Text PDF

Ocean deoxygenation driven by global warming and eutrophication is a primary concern for marine life. Resistant animals may be present in dead zone sediments, however there is lack of information on their diversity and metabolism. Here we combined geochemistry, microscopy, and RNA-seq for estimating taxonomy and functionality of micrometazoans along an oxygen gradient in the largest dead zone in the world.

View Article and Find Full Text PDF

Deposits of fibrous sediment, which include fiberbanks and fiber-rich sediments, are known to exist on the Swedish seafloor adjacent to coastally located former pulp and paper industries. These deposits contain concentrations of hazardous substances that exceed national background levels and contravene national environmental quality objectives (EQOs). In this study of metal fluxes from fibrous sediments using benthic flux chamber measurements (BFC) in situ we obtained detected fluxes of Co, Mo, Ni and Zn, but no fluxes of Pb, Hg and Cr.

View Article and Find Full Text PDF

Cable bacteria have been reported in sediments from marine and freshwater locations, but the environmental factors that regulate their growth in natural settings are not well understood. Most prominently, the physiological limit of cable bacteria in terms of oxygen availability remains poorly constrained. In this study, we investigated the presence, activity and diversity of cable bacteria in relation to a natural gradient in bottom water oxygenation in a depth transect of the Eastern Gotland Basin (Baltic Sea).

View Article and Find Full Text PDF

Coastal sediments are rich in conductive particles, possibly affecting microbial processes for which acetate is a central intermediate. In the methanogenic zone, acetate is consumed by methanogens and/or syntrophic acetate-oxidizing (SAO) consortia. SAO consortia live under extreme thermodynamic pressure, and their survival depends on successful partnership.

View Article and Find Full Text PDF

Oxygen-depleted bodies of water are becoming increasingly common in marine ecosystems. Solutions to reverse this trend are needed and under development, for example, by the Baltic deep-water OXygenation (BOX) project. In the framework of this project, the Swedish Byfjord was chosen for a pilot study, investigating the effects of an engineered oxygenation on long-term anoxic bottom waters.

View Article and Find Full Text PDF

The external phosphorus (P) loading has been halved, but the P content in the water column and the area of anoxic bottoms in Baltic proper has increased during the last 30 years. This can be explained by a temporary internal source of dissolved inorganic phosphorus (DIP) that is turned on when the water above the bottom sediment becomes anoxic. A load-response model, explaining the evolution from 1980 to 2005, suggests that the average specific DIP flux from anoxic bottoms in the Baltic proper is about 2.

View Article and Find Full Text PDF