Publications by authors named "Per Arvidsson"

Antimicrobial resistance (AMR) is a critical global issue, particularly against β-lactam antibiotics, which comprise over 60% of prescriptions. Metallo-β-lactamases (MBLs) are especially concerning as they inactivate nearly all β-lactams, except monobactams. Unlike serine-β-lactamases (SBLs), for which inhibitors exist, there are no clinically approved MBL inhibitors; only taniborbactam is in pre-registration.

View Article and Find Full Text PDF

The rising antibiotic resistance rates, especially among carbapenem-resistant Enterobacterales with metallo-β-lactamases (MBLs), highlight the urgent need for effective MBL inhibitors (MBLIs). Navigating the complexities of drug development for MBLIs requires addressing the significant challenges that have hindered its progress. Despite numerous efforts in pre-clinical development, the lack of standardized approaches has led to disparities, stalling the translation of potential MBLIs from research into clinical use.

View Article and Find Full Text PDF

Sulfilimines have so far received little attention as a bioisostere for sulfoxides in the design of biologically active compounds. A recent study on physicochemical and in vitro drug-like properties shows that sulfilimines deserve a place in the medicinal chemist's toolbox.

View Article and Find Full Text PDF

An efficient microwave-assisted synthesis route for novel oxazolidinone analogues has been developed. The general synthesis of these compounds began with an L-proline-mediated three-component Mannich reaction between commercially available 3-fluoro-4-morpholinoaniline, aqueous formaldehyde and α-hydroxyacetone. This was followed by a one-step cyclisation to form the core structure of oxazolidinone antibiotics which was subsequently derivatized.

View Article and Find Full Text PDF

This study introduces a novel proline-catalyzed oxidation system employing hydrogen peroxide to synthesize quinones from a diverse range of substrates, including hydroquinones, phenols, resorcinols, aldehydes, and polycyclic aromatics. This approach is well-aligned with green chemistry principles, offering a more environmentally benign approach than earlier studies. Notably, this approach uses cost-effective reagents, proline as a readily available organocatalyst, reduced equivalents of HO, metal-free conditions, and notably short reaction times to achieve moderate-to-high yields.

View Article and Find Full Text PDF

Background: Heart failure with reduced ejection fraction (HFrEF) is characterized by ventricular remodeling and impaired myocardial energetics. Left ventricular pressure-volume (PV) loop analysis can be performed noninvasively using cardiovascular magnetic resonance (CMR) imaging to assess cardiac thermodynamic efficiency.

Objectives: The aim of the study was to investigate whether noninvasive PV loop parameters, derived from CMR, could predict major adverse cardiac events (MACE) in HFrEF patients.

View Article and Find Full Text PDF

In health, the human heart is able to match ATP supply and demand perfectly. It requires 6 kg of ATP per day to satisfy demands of external work (mechanical force generation) and internal work (ion movements and basal metabolism). The heart is able to link supply with demand via direct responses to ADP and AMP concentrations but calcium concentrations within myocytes play a key role, signalling both inotropy, chronotropy and matched increases in ATP production.

View Article and Find Full Text PDF

In this study, we have delved into various reactions conducted using green solvents or under solvent-free conditions, employing hydrogen bonding organocatalysis to advance more sustainable practices in chemical synthesis. The outcomes suggest that cyclopentyl methyl ether could potentially replace non-polar organic solvents such as hexane and toluene with comparable enantioselectivity and yields. The non-polar nature of liquefied or supercritical CO restricts its application to reactions that require non-polar solvents.

View Article and Find Full Text PDF

Aims: Left ventricular (LV) pressure-volume (PV) loops provide gold-standard physiological information but require invasive measurements of ventricular intracavity pressure, limiting clinical and research applications. A non-invasive method for the computation of PV loops from magnetic resonance imaging and brachial cuff blood pressure has recently been proposed. Here we evaluated the fidelity of the non-invasive PV algorithm against invasive LV pressures in humans.

View Article and Find Full Text PDF

Background: Patients with heart failure and left bundle branch block (LBBB) may receive cardiac resynchronization therapy (CRT), but current selection criteria are imprecise, and many patients have limited treatment response. Hemodynamic forces (HDF) have been suggested as a marker for CRT response. The aim of this study was therefore to investigate left ventricular (LV) HDF as a predictive marker for LV remodeling after CRT.

View Article and Find Full Text PDF

β-lactamases are enzymes that deactivate β-lactam antibiotics through a hydrolysis mechanism. There are two known types of β-lactamases: serine β-lactamases (SBLs) and metallo β-lactamases (MBLs). The two existing strategies to overcome β-lactamase-mediated resistance are (a) to develop novel β-lactam antibiotics that are not susceptible to hydrolysis by these enzymes; or (b) to develop β-lactamase inhibitors that deactivate the enzyme and thereby restore the efficacy of the co-administered antibiotics.

View Article and Find Full Text PDF

Background: The failing heart is traditionally described as metabolically inflexible and oxygen starved, causing energetic deficit and contractile dysfunction. Current metabolic modulator therapies aim to increase glucose oxidation to increase oxygen efficiency of adenosine triphosphate production, with mixed results.

Methods: To investigate metabolic flexibility and oxygen delivery in the failing heart, 20 patients with nonischemic heart failure with reduced ejection fraction (left ventricular ejection fraction 34.

View Article and Find Full Text PDF

Virulent Enterobacterale strains expressing serine and metallo-β-lactamases (MBL) genes have emerged responsible for conferring resistance to hard-to-treat infectious diseases. One strategy that exists is to develop β-lactamase inhibitors to counter this resistance. Currently, serine β-lactamase inhibitors (SBLIs) are in therapeutic use.

View Article and Find Full Text PDF

β-lactams are the most prescribed class of antibiotics due to their potent, broad-spectrum antimicrobial activities. However, alarming rates of antimicrobial resistance now threaten the clinical relevance of these drugs, especially for the carbapenem-resistant expressing metallo-β-lactamases (MBLs). Antimicrobial agents that specifically target these enzymes to restore the efficacy of last resort β-lactam drugs, that is, carbapenems, are therefore desperately needed.

View Article and Find Full Text PDF

Precapillary pulmonary hypertension (PH) is a condition with elevated pulmonary vascular pressure and resistance. Patients have a poor prognosis and understanding the underlying pathophysiological mechanisms is crucial to guide and improve treatment. Ventricular hemodynamic forces (HDF) are a potential early marker of cardiac dysfunction, which may improve evaluation of treatment effect.

View Article and Find Full Text PDF

A novel method to derive pressure-volume (PV) loops noninvasively from cardiac magnetic resonance images has recently been developed. The aim of this study was to evaluate inter- and intraobserver variability of hemodynamic parameters obtained from noninvasive PV loops in healthy controls, subclinical diastolic dysfunction (SDD), and patients with heart failure with preserved ejection fraction, mildly reduced ejection fraction, and reduced ejection fraction. We included 75 subjects, of whom 15 were healthy controls, 15 subjects with SDD (defined as fulfilling 1 to 2 echocardiographic criteria for diastolic dysfunction), and 15 patients with preserved ejection fraction, 15 with mildly reduced ejection fraction, and 15 with reduced ejection fraction.

View Article and Find Full Text PDF

Kinetic energy (KE) of intracardiac blood flow reflects myocardial work spent on accelerating blood and provides a mechanistic window into diastolic filling dynamics. Diastolic dysfunction may represent an early stage in the development of heart failure (HF). Here we evaluated the hemodynamic effects of impaired diastolic function in subjects with and without HF, testing the hypothesis that left ventricular KE differs between controls, subjects with subclinical diastolic dysfunction (SDD), and patients with HF.

View Article and Find Full Text PDF

Hemodynamic force analysis has been proposed as a novel tool for early detection of subclinical systolic dysfunction in heart failure with preserved ejection fraction (HFpEF). Here we investigated the ability of hemodynamic forces to discriminate between healthy subjects and heart failure patients with varying degrees of systolic dysfunction. We studied 34 controls, 16 HFpEF patients, and 25 heart failure patients with mid-range (HFmrEF) or reduced ejection fraction (HFrEF) using cardiac magnetic resonance with acquisition of cine images and 4D flow at 1.

View Article and Find Full Text PDF

The folate metabolism enzyme MTHFD2 (methylenetetrahydrofolate dehydrogenase/cyclohydrolase) is consistently overexpressed in cancer but its roles are not fully characterized, and current candidate inhibitors have limited potency for clinical development. In the present study, we demonstrate a role for MTHFD2 in DNA replication and genomic stability in cancer cells, and perform a drug screen to identify potent and selective nanomolar MTHFD2 inhibitors; protein cocrystal structures demonstrated binding to the active site of MTHFD2 and target engagement. MTHFD2 inhibitors reduced replication fork speed and induced replication stress followed by S-phase arrest and apoptosis of acute myeloid leukemia cells in vitro and in vivo, with a therapeutic window spanning four orders of magnitude compared with nontumorigenic cells.

View Article and Find Full Text PDF

Background: Segmentation of the left atrium (LA) is required to evaluate atrial size and function, which are important imaging biomarkers for a wide range of cardiovascular conditions, such as atrial fibrillation, stroke, and diastolic dysfunction. LA segmentations are currently being performed manually, which is time-consuming and observer-dependent.

Methods: This study presents an automated image processing algorithm for time-resolved LA segmentation in cardiac magnetic resonance imaging (MRI) long-axis cine images of the 2-chamber (2ch) and 4-chamber (4ch) views using active contours.

View Article and Find Full Text PDF

A wide range of microorganisms can infect the central nervous system (CNS). The immune response of the CNS provides limited protection against microbes penetrating the blood-brain barrier. This results in a neurological deficit and sometimes leads to high morbidity and mortality rates despite advanced therapies.

View Article and Find Full Text PDF

The Nrf2 transcription factor is a key regulator of redox reactions and considered the main target for the multiple sclerosis (MS) drug dimethyl fumarate (DMF). However, exploration of additional Nrf2-activating compounds is motivated, since DMF displays significant off-target effects and has a relatively poor penetrance to the central nervous system (CNS). We de novo synthesized eight vinyl sulfone and sulfoximine compounds (CH-1-CH-8) and evaluated their capacity to activate the transcription factors Nrf2, NFκB, and HIF1 in comparison with DMF using the pTRAF platform.

View Article and Find Full Text PDF

Introduction: Antibiotic resistance caused by beta-lactamase expressing bacteria poses a concern given its global dissemination and proliferation. The emergence of the metallo beta-lactamases is an indefinite health threat toward which current antibiotics have limited clinical efficacy. One solution is to develop metallo beta-lactamase inhibitors (MBLIs) capable of restoring the activity of beta-lactam drugs.

View Article and Find Full Text PDF