The rate of lipid digestion can be delayed by the interface modulation of O/W Pickering emulsions. In this study, bacterial cellulose nanofibrils prepared by ball milling synergized with electron beam irradiation (B-IB50) were used as stabilizers to prepare Pickering emulsions. Results showed that B-IB50 formed emulsion systems with good stability.
View Article and Find Full Text PDFIn this study, the enhancement of Pickering effect of ovalbumin (OVA) with bacterial cellulose nanofibers (BCNFs) prepared by electron beam irradiation was investigated and the environmental stability of oil-in-water Pickering emulsions stabilized by OVA/BCNFs complexes was explored by varying ratios of OVA/BCNFS (1:0.2, 1:0.4, 1:0.
View Article and Find Full Text PDFIn this study, high internal phase Pickering emulsions (HIPPEs) were stabilized by the complexes of peanut protein isolate (PPI) and cellulose nanocrystals (CNCs) for encapsulation β-carotene to retard its degradation during processing and storage. CNCs were prepared by HSO hydrolysis (HCNCs), APS oxidation (ACNCs) and TEMPO oxidation (TCNCs), exhibiting needle-like or rod-like structures with nanoscale size and uniformly distributed around the spherical PPI particle, which enhanced the emulsifying capability of PPI. Results of optical micrographs and droplet size measurement showed that Pickering emulsions stabilized by PPI/ACNCs complexes exhibited the most excellent stability after 30 days of storage, which indicated that ACNCs had the most obvious effect to improve emulsifying capability of PPI.
View Article and Find Full Text PDFInt J Biol Macromol
July 2023
The development of Pickering emulsions which are applicable to the food industry still remains challenges due to the limited availability for biocompatible, edible and natural emulsifiers. The purpose of this study was to extract cellulose nanocrystals from litchi peels (LP-CNCs), and evaluate their emulsifying properties. The results showed that the LP-CNCs were needle-like and they possessed high crystallinity (72.
View Article and Find Full Text PDF