Petroleum serves as a critical energy source and industrial raw material, yet its leakage frequently leads to severe soil contamination. Traditional remediation methods for petroleum-contaminated soil are often energy-intensive and associated with high carbon emissions. To address climate change challenges, it is imperative to adopt green and sustainable remediation technologies that reduce energy consumption and carbon footprints simultaneously.
View Article and Find Full Text PDFThe exploitation of lignocellulosic biomass (LB) such as sugar bagasse waste in biorefineries is the most cost-effective and favourable sustainable approach to producing essential platform chemicals, materials, and energy environmentally benignly. Herein, a microwave-mediated deep eutectic solvents (DESs)/dimethyl sulfoxide (DMSO) system for efficiently processing LB waste into platform chemicals was proposed thereof. Under optimized appropriate diverse parameters such as solvent varieties, catalyst dosage, DMSO addition, reaction time and temperature, the proposed catalytic system (i.
View Article and Find Full Text PDFThe technology for remediating heavy metal-contaminated soil is considerably limited because heavy metals do not undergo decomposition. Off-site reuse has emerged as the main technique for treating heavy metal-contaminated soil. Soil is the primary material in red brick making; and in the sintering procedure, heavy metals could solidify and stabilize within bricks.
View Article and Find Full Text PDF