Publications by authors named "Pavan Vedula"

Actin is an essential component of the cytoskeleton in every eukaryotic cell. β-and γ-nonmuscle actin are over 99% identical to each other at the protein level but are encoded by different genes and play distinct roles in vivo. Blood cells, especially red blood cells (RBC), contain almost exclusively β-actin, and it has been generally assumed that this bias is dictated by the unique suitability of β-actin for RBC cytoskeleton function due to its specific amino acid sequence.

View Article and Find Full Text PDF

Lack of non-muscle -actin gene (Actb) leads to early embryonic lethality in mice, however mice with - to -actin replacement develop normally and show no detectable phenotypes at young age. Here we investigated the effect of this replacement in the retina. During aging, these mice have accelerated de-generation of retinal structure and function, including elongated microvilli and defective mitochondria of retinal pigment epithelium (RPE), abnormally bulging photoreceptor outer segments (OS) accompanied by reduced transducin concentration and light sensitivity, and accumulation of autofluorescent microglia cells in the subretinal space between RPE and OS.

View Article and Find Full Text PDF

Cytoplasmic beta- and gamma-actin are ubiquitously expressed in every eukaryotic cell. They are encoded by different genes, but their amino acid sequences differ only by four conservative substitutions at the N-termini, making it difficult to dissect their individual regulation. Here, we analyzed actin from cultured cells and tissues by mass spectrometry and found that beta, unlike gamma actin, undergoes sequential removal of N-terminal Asp residues, leading to truncated actin species found in both F- and G-actin preparations.

View Article and Find Full Text PDF

Fibronectin (Fn1) fibrils have long been viewed as continuous fibers composed of extended, periodically aligned Fn1 molecules. However, our live-imaging and single-molecule localization microscopy data are inconsistent with this traditional view and show that Fn1 fibrils are composed of roughly spherical nanodomains containing six to eleven Fn1 dimers. As they move toward the cell center, Fn1 nanodomains become organized into linear arrays, in which nanodomains are spaced with an average periodicity of 105±17 nm.

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is a highly contagious virus of the coronavirus family that causes coronavirus disease-19 (COVID-19) in humans and a number of animal species. COVID-19 has rapidly propagated in the world in the past 2 years, causing a global pandemic. Here, we performed proteomic analysis of plasma samples from COVID-19 patients compared to healthy control donors in an exploratory study to gain insights into protein-level changes in the patients caused by SARS-CoV-2 infection and to identify potential proteomic and posttranslational signatures of this disease.

View Article and Find Full Text PDF

Arginylation is a post-translational modification mediated by the arginyltransferase (Ate1). We recently showed that conditional deletion of Ate1 in the nervous system leads to increased light-evoked response sensitivities of ON-bipolar cells in the retina, indicating that arginylation regulates the G-protein signaling complexes of those neurons and/or photoreceptors. However, none of the key players in the signaling pathway were previously shown to be arginylated.

View Article and Find Full Text PDF

β- and γ-cytoplasmic actins are ubiquitously expressed in every cell type and are nearly identical at the amino acid level but play vastly different roles in vivo. Their essential roles in embryogenesis and mesenchymal cell migration critically depend on the nucleotide sequences of their genes, rather than their amino acid sequences; however, it is unclear which gene elements underlie this effect. Here we address the specific role of the coding sequence in β- and γ-cytoplasmic actins' intracellular functions, using stable polyclonal populations of immortalized mouse embryonic fibroblasts with exogenously expressed actin isoforms and their 'codon-switched' variants.

View Article and Find Full Text PDF

The actin cytoskeleton plays key roles in every eukaryotic cell and is essential for cell adhesion, migration, mechanosensing, and contractility in muscle and non-muscle tissues. In higher vertebrates, from birds through to mammals, actin is represented by a family of six conserved genes. Although these genes have evolved independently for more than 100 million years, they encode proteins with ≥94% sequence identity, which are differentially expressed in different tissues, and tightly regulated throughout embryogenesis and adulthood.

View Article and Find Full Text PDF

β-actin plays key roles in cell migration. Our previous work demonstrated that β-actin in migratory non-muscle cells is N-terminally arginylated and that this arginylation is required for normal lamellipodia extension. Here, we examined the function of β-actin arginylation in cell migration.

View Article and Find Full Text PDF

β- and γ-cytoplasmic actin are nearly indistinguishable in their amino acid sequence, but are encoded by different genes that play non-redundant biological roles. The key determinants that drive their functional distinction are unknown. Here, we tested the hypothesis that β- and γ-actin functions are defined by their nucleotide, rather than their amino acid sequence, using targeted editing of the mouse genome.

View Article and Find Full Text PDF

Arginylation is an emerging protein modification mediated by arginyltransferase ATE1, shown to regulate embryogenesis and actin cytoskeleton, however its functions in different physiological systems are not well understood. Here we analyzed the role of ATE1 in brain development and neuronal growth by producing a conditional mouse knockout with Ate1 deletion in the nervous system driven by Nestin promoter (Nes-Ate1 mice). These mice were weaker than wild type, resulting in low postnatal survival rates, and had abnormalities in the brain that suggested defects in neuronal migration.

View Article and Find Full Text PDF

Quantifying multi-molecular complex assembly in specific cytoplasmic compartments is crucial to understand how cells use assembly/disassembly of these complexes to control function. Currently, biophysical methods like Fluorescence Resonance Energy Transfer and Fluorescence Correlation Spectroscopy provide quantitative measurements of direct protein-protein interactions, while traditional biochemical approaches such as sub-cellular fractionation and immunoprecipitation remain the main approaches used to study multi-protein complex assembly/disassembly dynamics. In this article, we validate and quantify multi-protein adherens junction complex assembly in situ using light microscopy and Fluorescence Covariance Analysis.

View Article and Find Full Text PDF

Regulating adherens junction complex assembly/disassembly is critical to maintaining epithelial homeostasis in healthy epithelial tissues. Consequently, adherens junction structure and function is often perturbed in clinically advanced tumors of epithelial origin. Some of the most studied factors driving adherens junction complex perturbation in epithelial cancers are transcriptional and epigenetic down-regulation of E-cadherin expression.

View Article and Find Full Text PDF

Communication between stem and niche supporting cells maintains the homeostasis of adult tissues. Wnt signaling is a crucial regulator of the stem cell niche, but the mechanism that governs Wnt ligand delivery in this compartment has not been fully investigated. We identified that Wnt secretion is partly dependent on Rab8a-mediated anterograde transport of Gpr177 (wntless), a Wnt-specific transmembrane transporter.

View Article and Find Full Text PDF

Mutations in the APC or β-catenin genes are well-established initiators of colorectal cancer, yet modifiers that facilitate the survival and progression of nascent tumor cells are not well defined. Using genetic and pharmacologic approaches in mouse colorectal cancer and human colorectal cancer xenograft models, we show that incipient intestinal tumor cells activate CDC42, an APC-interacting small GTPase, as a crucial step in malignant progression. In the mouse, Cdc42 ablation attenuated the tumorigenicity of mutant intestinal cells carrying single APC or β-catenin mutations.

View Article and Find Full Text PDF

Epithelial cell-cell contact stimulates actin cytoskeleton remodeling to down-regulate branched filament polymerization-driven lamellar protrusion and subsequently to assemble linear actin filaments required for E-cadherin anchoring during adherens junction complex assembly. In this manuscript, we demonstrate that de novo protein synthesis, the β-actin 3' UTR, and the β-actin mRNA zipcode are required for epithelial adherens junction complex assembly but not maintenance. Specifically, we demonstrate that perturbing cell-cell contact-localized β-actin monomer synthesis causes epithelial adherens junction assembly defects.

View Article and Find Full Text PDF