Traffic-derived air pollution (TDAP) frequently exceeds the 2021 World Health Organization air quality guideline levels and is linked to respiratory diseases through molecular mechanisms such as oxidative stress and inflammation. To determine these mechanisms without relying on animal models and inter-species extrapolation, physiologically relevant human in vitro models are promising tools. We sought to investigate the oxidative stress and inflammatory responses to TDAP in a co-culture model of the human lung.
View Article and Find Full Text PDFBackground: Physiologically based kinetic models facilitate the safety assessment of inhaled engineered nanomaterials (ENMs). To develop these models, high quality datasets on well-characterized ENMs are needed. However, there are at present, several data gaps in the systemic availability of poorly soluble particles after inhalation.
View Article and Find Full Text PDFGraphene oxide nanomaterials are being developed for wide-ranging applications but are associated with potential safety concerns for human health. We conducted a double-blind randomized controlled study to determine how the inhalation of graphene oxide nanosheets affects acute pulmonary and cardiovascular function. Small and ultrasmall graphene oxide nanosheets at a concentration of 200 μg m or filtered air were inhaled for 2 h by 14 young healthy volunteers in repeated visits.
View Article and Find Full Text PDFIn most airplanes, cabin air is extracted from the turbine compressors, so-called bleed air. Bleed air can become contaminated by leakage of engine oil or hydraulic fluid and possible neurotoxic constituents, like triphenyl phosphate (TPhP) and tributyl phosphate (TBP). The aim of this study was to characterize the neurotoxic hazard of TBP and TPhP, and to compare this with the possible hazard of fumes originating from engine oils and hydraulic fluids in vitro.
View Article and Find Full Text PDFChronic obstructive pulmonary disease (COPD) is a devastating lung disease primarily caused by exposure to cigarette smoke (CS). During the pyrolysis and combustion of tobacco, reactive aldehydes such as acetaldehyde, acrolein, and formaldehyde are formed, which are known to be involved in respiratory toxicity. Although CS-induced mitochondrial dysfunction has been implicated in the pathophysiology of COPD, the role of aldehydes therein is incompletely understood.
View Article and Find Full Text PDFThe most direct effects of inhaled harmful constituents are the effects on the airways. However, inhaled compounds can be rapidly absorbed and subsequently result in systemic effects. For example, e-cigarette vapor has been shown to evoke local effects in the lung, although little is known about subsequent effects in secondary target organs such as the brain.
View Article and Find Full Text PDFHigh-energy industrial processes have been associated with particle release into workplace air that can adversely affect workers' health. The present study assessed the toxicity of incidental fine (PGFP) and nanoparticles (PGNP) emitted from atmospheric plasma (APS) and high-velocity oxy-fuel (HVOF) thermal spraying. Lactate dehydrogenase (LDH) release, 2-(4-nitrophenyl)-2H-5-tetrazolio]-1,3-benzene disulfonate (WST-1) metabolisation, intracellular reactive oxygen species (ROS) levels, cell cycle changes, histone H2AX phosphorylation (γ-H2AX) and DNA damage were evaluated in human alveolar epithelial cells at 24 h after exposure.
View Article and Find Full Text PDFDiverse industries have already incorporated within their production processes engineered nanoparticles (ENP), increasing the potential risk of worker inhalation exposure. models have been widely used to investigate ENP toxicity. Air-liquid interface (ALI) cell cultures have been emerging as a valuable alternative to submerged cultures as they are more representative of the inhalation exposure to airborne nano-sized particles.
View Article and Find Full Text PDFThe advanced ceramic technology has been pointed out as a potentially relevant case of occupational exposure to nanoparticles (NP). Not only when nanoscale powders are being used for production, but also in the high-temperature processing of ceramic materials there is also a high potential for NP release into the workplace environment. toxicity of engineered NP (ENP) [antimony tin oxide (SbO•SnO; ATO); zirconium oxide (ZrO)], as well as process-generated NP (PGNP), and fine particles (PGFP), was assessed in MucilAir™ cultures at air-liquid interface (ALI).
View Article and Find Full Text PDFInhalation exposure to environmental and occupational aerosol contaminants is associated with many respiratory health problems. To realistically mimic long-term inhalation exposure for toxicity testing, lung epithelial cells need to maintained and exposed under air-liquid interface (ALI) conditions for a prolonged period of time. In addition, to study cellular responses to aerosol particles, lung epithelial cells have to be co-cultured with macrophages.
View Article and Find Full Text PDFRelatively high concentrations of ultrafine particles (UFPs) have been observed around airports, in which aviation and road traffic emissions are the major sources. This raises concerns about the potential health impacts of airport UFPs, particularly in comparison to those emitted by road traffic. UFPs mainly derived from aviation or road traffic emissions were collected from a location near a major international airport, Amsterdam-Schiphol airport (AMS), depending on the wind direction, along with UFPs from an aircraft turbine engine at low and full thrust.
View Article and Find Full Text PDFFor toxicity testing of airborne particles, air-liquid interface (ALI) exposure systems have been developed for in vitro tests in order to mimic realistic exposure conditions. This puts specific demands on the cell culture models. Many cell types are negatively affected by exposure to air (e.
View Article and Find Full Text PDFToxicol In Vitro
June 2020
Air Liquid Interface (ALI) system has emerged as a useful tool for toxicity evaluation of nanomaterials related to inhalation since the system mimics the aerosol exposure. We compared the biological responses of lung epithelial cells exposed to titanium dioxide (TiO) nanofibers and nanoparticles in ALI and submerged cell cultures systems. Cells were exposed to 2 and 10 μg/cm for 24 h, 48 h and 72 h and LDH release, TiO internalization, DNA-double strand breaks (DSBs) and ROS production were assessed.
View Article and Find Full Text PDFRecently, interest for the potential impact of consumer-relevant engineered nanoparticles on pregnancy has dramatically increased. This study investigates whether inhaled silver nanoparticles (AgNPs) reach and cross mouse placental barrier and induce adverse effects. Apart from their relevance for the growing use in consumer products and biomedical applications, AgNPs are selected since they can be unequivocally identified in tissues.
View Article and Find Full Text PDFThe development of engineered nanomaterials is growing exponentially, despite concerns over their potential similarities to environmental nanoparticles that are associated with significant cardiorespiratory morbidity and mortality. The mechanisms through which inhalation of nanoparticles could trigger acute cardiovascular events are emerging, but a fundamental unanswered question remains: Do inhaled nanoparticles translocate from the lung in man and directly contribute to the pathogenesis of cardiovascular disease? In complementary clinical and experimental studies, we used gold nanoparticles to evaluate particle translocation, permitting detection by high-resolution inductively coupled mass spectrometry and Raman microscopy. Healthy volunteers were exposed to nanoparticles by acute inhalation, followed by repeated sampling of blood and urine.
View Article and Find Full Text PDFBackground: Airborne pollution is a rising concern in urban areas. Epidemiological studies in humans and animal experiments using rodent models indicate that gestational exposure to airborne pollution, in particular diesel engine exhaust (DE), reduces birth weight, but effects depend on exposure duration, gestational window and nanoparticle (NP) concentration. Our aim was to evaluate the effects of gestational exposure to diluted DE on feto-placental development in a rabbit model.
View Article and Find Full Text PDFA number of studies have shown that induction of pulmonary toxicity by nanoparticles of the same chemical composition depends on particle size, which is likely in part due to differences in lung deposition. Particle size mostly determines whether nanoparticles reach the alveoli, and where they might induce toxicity. For the risk assessment of nanomaterials, there is need for a suitable dose metric that accounts for differences in effects between different sized nanoparticles of the same chemical composition.
View Article and Find Full Text PDFBackground: Although silver nanoparticles are currently used in more than 400 consumer products, it is not clear to what extent they induce adverse effects after inhalation during production and use. In this study, we determined the lung burden, tissue distribution, and the induction and recovery of adverse effects after short-term inhalation exposure to 15 nm and 410 nm silver nanoparticles.
Methods: Rats were nose-only exposed to clean air, 15 nm silver nanoparticles (179 μg/m³) or 410 nm silver particles (167 μg/m³) 6 hours per day, for four consecutive days.
Aim: Exposure to road traffic and air pollution may be a trigger of acute myocardial infarction, but the individual pollutants responsible for this effect have not been established. We assess the role of combustion-derived-nanoparticles in mediating the adverse cardiovascular effects of air pollution.
Methods And Results: To determine the in vivo effects of inhalation of diesel exhaust components, 16 healthy volunteers were exposed to (i) dilute diesel exhaust, (ii) pure carbon nanoparticulate, (iii) filtered diesel exhaust, or (iv) filtered air, in a randomized double blind cross-over study.
Traffic-related particulate matter (PM) may play an important role in the development of adverse health effects, as documented extensively in acute toxicity studies. However, rather little is known about the impacts of prolonged exposure to PM. We hypothesized that long-term exposure to PM from traffic adversely affects the pulmonary and cardiovascular system through exacerbation of an inflammatory response.
View Article and Find Full Text PDFThis study was designed to determine the sequence of events leading to cardiopulmonary effects following acute inhalation of diesel engine exhaust in rats. Rats were exposed for 2 h to diesel engine exhaust (1.9 mg/m(3)), and biological parameters related to antioxidant defense, inflammation, and procoagulation were examined after 4, 18, 24, 48, and 72 h.
View Article and Find Full Text PDFBackground: Exposure to air pollution is an important risk factor for cardiovascular morbidity and mortality, and is associated with increased blood pressure, reduced heart rate variability, endothelial dysfunction and myocardial ischaemia. Our objectives were to assess the cardiovascular effects of reducing air pollution exposure by wearing a facemask.
Methods: In an open-label cross-over randomised controlled trial, 15 healthy volunteers (median age 28 years) walked on a predefined city centre route in Beijing in the presence and absence of a highly efficient facemask.
Background: Exposure to fine particulate air pollution is associated with increased cardiovascular morbidity and mortality. We previously demonstrated that exposure to dilute diesel exhaust causes vascular dysfunction in humans.
Objectives: We conducted a study to determine whether exposure to ambient particulate matter causes vascular dysfunction.
The oxidant ozone is a well-known air pollutant, inhalation of which is associated with respiratory tract inflammation and functional alterations of the lung. It is well established as an inducer of intracellular oxidative stress. We investigated whether Cockayne syndrome B, transcription-coupled, repair-deficient mice (Csb(-/-)), known to be sensitive to oxidative stressors, respond differently to ozone than repair-proficient controls (Csb(+/-)).
View Article and Find Full Text PDF