Publications by authors named "Paul A MacAry"

While antibodies have emerged as potential mediators of protective immunity against (Mtb), their mechanisms of action remain incompletely understood. Here, we demonstrate that immune complexes of Mtb and monoclonal antibodies targeting the Mtb phosphate transporter subunit PstS1 robustly activate the NLRP3 inflammasome in human and murine macrophages, leading to enhanced interleukin-1β secretion. Surprisingly, antibody-mediated inflammasome activation occurred independently of cell-surface Fcγ receptors, as confirmed using Fc-domain glycosylation mutant mAbs and macrophages from Fcγ receptor-deficient mice.

View Article and Find Full Text PDF

Genetic determinants of susceptibility to Mycobacterium tuberculosis (Mtb) remain poorly understood but could provide insights into critical pathways involved in infection, informing host-directed therapies and enabling risk stratification at individual and population levels. Through a genome-wide forward genetic screen, we identify Toll-like receptor 8 (TLR8) as a key regulator of intracellular killing of Mtb. Pharmacological TLR8 activation enhances the killing of phylogenetically diverse clinical isolates of drug-susceptible and multidrug-resistant Mtb by macrophages and during in vivo infection in mice.

View Article and Find Full Text PDF

Circular RNAs are an increasingly important class of RNA molecules that can be engineered as RNA vaccines and therapeutics. Here, we screened eight different group I introns for their ability to circularize and delineated different features that are important for their function. First, we identified the Scytalidium dimidiatum group I intron as causing minimal innate immune activation inside cells, underscoring its potential to serve as an effective RNA vaccine without triggering unwanted reactogenicity.

View Article and Find Full Text PDF

Over the last decades, organ transplantation has made rapid progress as a curative therapy for organ failure. However, the adaptive immune system-alloreactive T cells and antibodies targeting human leukocyte antigens (HLA)-is the leading cause of graft rejection. The presence of anti-donor HLA antibodies is considered a risk factor that disqualifies a particular donor-recipient pair.

View Article and Find Full Text PDF

Donor-specific antibodies (DSAs) targeting mismatched human leukocyte antigen (HLA) molecules are one of the principal threats to long-term graft survival in solid organ transplantation. However, many patients with long-term circulating DSAs do not manifest rejection responses, suggesting a degree of heterogeneity in their pathogenicity and related functional activity. Immunologic risk stratification of transplant recipients is complicated by challenges intrinsic to defining alloantibody responses that are potentially pathogenic versus those that are not.

View Article and Find Full Text PDF

Background: Immunity to SARS-CoV-2 vaccination and infection differs considerably among individuals. We investigate the critical pathways that influence vaccine-induced cross-variant serological immunity among individuals at high-risk of COVID-19 complications.

Methods: Neutralizing antibodies to the wild-type SARS-CoV-2 virus and its variants (Beta, Gamma, Delta and Omicron) were analyzed in patients with autoimmune diseases, chronic comorbidities (multimorbidity), and healthy controls.

View Article and Find Full Text PDF

Current coronavirus disease 2019 vaccines face limitations including waning immunity, immune escape by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants, limited cellular response, and poor mucosal immunity. We engineered a Clec9A-receptor binding domain (RBD) antibody construct that delivers the SARS-CoV-2 RBD to conventional type 1 dendritic cells. Compared with non-targeting approaches, single dose immunization in mice with Clec9A-RBD induced far higher RBD-specific antibody titers that were sustained for up to 21 months after vaccination.

View Article and Find Full Text PDF

Cross-linking mass spectrometry (XL-MS) provides low-resolution structural information to model protein structures. Here, we present a protocol to identify cross-links of purified antibody binding to purified human leukocyte antigen (HLA). We describe steps for using a discovery-based XL-MS approach followed by a targeted XL-MS approach.

View Article and Find Full Text PDF

Background: Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can lead to severe disease with increased morbidity and mortality among certain risk groups. The presence of autoantibodies against type I interferons (aIFN-Abs) is one mechanism that contributes to severe coronavirus disease 2019 (COVID-19).

Methods: This study aimed to investigate the presence of aIFN-Abs in relation to the soluble proteome, circulating immune cell numbers, and cellular phenotypes, as well as development of adaptive immunity.

View Article and Find Full Text PDF

The advent of SARS-CoV-2 variants with defined mutations that augment pathogenicity and/or increase immune evasiveness continues to stimulate global efforts to improve vaccine formulation and efficacy. The extraordinary advantages of lipid nanoparticles (LNPs), including versatile design, scalability, and reproducibility, make them ideal candidates for developing next-generation mRNA vaccines against circulating SARS-CoV-2 variants. Here, we assess the efficacy of LNP-encapsulated mRNA booster vaccines encoding the spike protein of SARS-CoV-2 for variants of concern (Delta, Omicron) and using a predecessor (YN2016C isolated from bats) strain spike protein to elicit durable cross-protective neutralizing antibody responses.

View Article and Find Full Text PDF

Although the two-dose mRNA vaccination regime provides protection against SARS-CoV-2, older adults have been shown to exhibit poorer vaccination responses. In addition, the role of vaccine-induced T-cell responses is not well characterised. We aim to assess the impact of age on immune responses after two doses of the BNT162b2 mRNA vaccine, focussing on antigen-specific T-cells.

View Article and Find Full Text PDF

The scale and duration of neutralizing antibody responses targeting SARS-CoV-2 viral variants represents a critically important serological parameter that predicts protective immunity for COVID-19. In this study, we describe the development and employment of a new functional assay that measures neutralizing antibodies for SARS-CoV-2 and present longitudinal data illustrating the impact of age, sex and comorbidities on the kinetics and strength of vaccine-induced antibody responses for key variants in an Asian volunteer cohort. We also present an accurate quantitation of serological responses for SARS-CoV-2 that exploits a unique set of in-house, recombinant human monoclonal antibodies targeting the viral Spike and nucleocapsid proteins and demonstrate a reduction in neutralizing antibody titres across all groups 6 months post-vaccination.

View Article and Find Full Text PDF

The changing landscape of SARS-CoV-2 Spike protein is linked to the emergence of variants, immune-escape and reduced efficacy of the existing repertoire of anti-viral antibodies. The functional activity of neutralizing antibodies is linked to their quaternary changes occurring as a result of antibody-Spike trimer interactions. Here, we reveal the conformational dynamics and allosteric perturbations linked to binding of novel human antibodies and the viral Spike protein.

View Article and Find Full Text PDF

COVID-19 vaccination has significantly impacted the global pandemic by reducing the severity of infection, lowering rates of hospitalization, and reducing morbidity/mortality in healthy individuals. However, the degree of vaccine-induced protection afforded to renal transplant recipients who receive forms of maintenance immunosuppression remains poorly defined. This is particularly important when we factor in the emergence of SARS-CoV-2 variants of concern (VOCs) that have defined mutations that reduce the effectiveness of Ab responses targeting the Spike Ags from the ancestral Wuhan-Hu-1 variants employed in the most widely used vaccine formats.

View Article and Find Full Text PDF

Alloantibody recognition of donor human leukocyte antigen (HLA) is associated with poor clinical transplantation outcomes. However, the molecular and structural basis for the alloantibody-HLA interaction is not well understood. Here, we used a hybrid structural modeling approach on a previously studied alloantibody-HLA interacting pair with inputs from ab initio, in silico, and in vitro data.

View Article and Find Full Text PDF
Article Synopsis
  • Tuberculosis (TB) is caused by the airborne bacteria Mycobacterium tuberculosis (Mtb), and while the role of antibodies in protecting against it isn't fully understood, they may play a crucial part in host defense.
  • This study analyzed the IgG/IgA memory B cell responses in healthy individuals exposed to TB, identifying a human monoclonal antibody that can protect against the disease by targeting a specific virulence factor called LpqH.
  • Findings showed that the protective effects varied depending on the antibody type, with IgG2 and IgA providing the strongest defense, suggesting new avenues for improving TB vaccines and understanding natural immunity.
View Article and Find Full Text PDF
Article Synopsis
  • Elderly individuals (70 years and older) show weaker antibody responses to a COVID-19 booster compared to younger people after receiving an initial two-dose vaccine series with AZD1222 and a third mRNA booster.
  • The elderly have a specific type of B cells (anomalous spike-specific B cells) that may impair their ability to neutralize the virus effectively after the booster.
  • Interestingly, when elderly individuals receive three doses of mRNA vaccines, their antibody responses are comparable to those younger than 70, suggesting that different vaccine technologies influence immune memory formation.
View Article and Find Full Text PDF

Objectives: Platelets and low-density neutrophils (LDNs) are major players in the immunopathogenesis of SLE. Despite evidence showing the importance of platelet-neutrophil complexes (PNCs) in inflammation, little is known about the relationship between LDNs and platelets in SLE. We sought to characterize the role of LDNs and Toll-like receptor 7 (TLR7) in clinical disease.

View Article and Find Full Text PDF

Signal transduction induced by chimeric antigen receptors (CARs) is generally believed to rely on the activity of the SRC family kinase (SFK) LCK, as is the case with T cell receptor (TCR) signaling. Here, we show that CAR signaling occurs in the absence of LCK. This LCK-independent signaling requires the related SFK FYN and a CD28 intracellular domain within the CAR.

View Article and Find Full Text PDF

Several human monoclonal Abs for treating Influenza have been evaluated in clinical trials with limited success despite demonstrating superiority in preclinical animal models including mice. To conduct efficacy studies in mice, human monoclonal Abs are genetically engineered to contain mouse heavy chain constant domain to facilitate the engagement of Fc-receptors on mouse immune effector cells. Although studies have consistently reported discrepancies in Ab effectiveness following genetic engineering, the structural and mechanistic basis for these inconsistencies remain uncharacterized.

View Article and Find Full Text PDF

The public health threat from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to intensify with emerging variants of concern (VOC) aiming to render COVID-19 vaccines/infection-induced antibodies redundant. The SARS-CoV-2 spike protein is responsible for receptor binding and infection of host cells making it a legitimate antibody target. Antibodies mostly target epitopes in the receptor binding domain (RBD).

View Article and Find Full Text PDF

Waning antibody levels against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the emergence of variants of concern highlight the need for booster vaccinations. This is particularly important for the elderly population, who are at a higher risk of developing severe coronavirus disease 2019 (COVID-19) disease. While studies have shown increased antibody responses following booster vaccination, understanding the changes in T and B cell compartments induced by a third vaccine dose remains limited.

View Article and Find Full Text PDF

Hepatitis B Virus (HBV) is a hepadnavirus that is the principal pathogen underlying viral liver disease in human populations. In this study, we describe the isolation and characterization of a fully human monoclonal antibody for HBV. This HuMab was isolated by a combinatorial screen of the memory B-cell repertoire from an acute/recovered HBV-infected patient.

View Article and Find Full Text PDF