Publications by authors named "Patricia Gonzalez-Berdullas"

Cancer is still one of the most challenging diseases to treat, making the pursuit for novel molecules with potential anticancer activity an important research topic. Herein, we have performed a comparative investigation into the anticancer activity of analogs of marine coelenterazine and coelenteramine. The former is a well-known bioluminescent substrate, while the latter is a metabolic product of the resulting bioluminescent reaction.

View Article and Find Full Text PDF

The mode of action toward gastric cancer cells of brominated Coelenteramine, an analogue of a metabolic product of a marine bioluminescent reaction, was investigated by synchrotron radiation-based Fourier Transform Infrared spectrocopy (FTIR). This method revealed that the anticancer activity of brominated Coelenteramine is closely connected with cellular lipids, by affecting their organization and composition. More specifically, there is an increasing extent of oxidative stress, which results in changes in membrane polarity, lipid chain packing and lipid composition.

View Article and Find Full Text PDF

Marine Coelenterazine is one of the most well-known chemi-/bioluminescent systems, and in which reaction the chemi-/bioluminophore (Coelenteramide) is generated and chemiexcited to singlet excited states (leading to light emission). Recent studies have shown that the bromination of compounds associated with the marine Coelenterazine system can provide them with new properties, such as anticancer activity and enhanced emission. Given this, our objective is to characterize the photophysical properties of a previously reported brominated Coelenteramide analog, by employing a combined experimental and theoretical approach.

View Article and Find Full Text PDF

Cancer is a very challenging disease to treat, both in terms of therapeutic efficiency and harmful side effects, which continues to motivate the pursuit for novel molecules with potential anticancer activity. Herein, we have designed, synthesized, and evaluated the cytotoxicity of different brominated coelenteramines, which are metabolic products and synthesis precursors of the chemi-/bioluminescent system of marine coelenterazine. The evaluation of the anticancer potential of these molecules was carried out for both prostate and breast cancer, while also exploring their potential for use in combination therapy.

View Article and Find Full Text PDF

Chemi- and bioluminescence are remarkable light-emitting phenomena, in which thermal energy is converted into excitation energy due to a (bio)chemical reaction. Among a wide variety of chemi-/bioluminescent systems, one of the most well-known and studied systems is that of marine imidazopyrazinones, such as Coelenterazine and luciferin. Due to the increasing usefulness of their chemi-/bioluminescent reactions in terms of imaging and sensing applications, among others, significant effort has been made over the years by researchers to develop new derivatives with enhanced properties.

View Article and Find Full Text PDF

Cancer is still a challenging disease to treat, both in terms of harmful side effects and therapeutic efficiency of the available treatments. Herein, to develop new therapeutic molecules, we have investigated the anticancer activity of halogenated derivatives of different components of the bioluminescent system of marine Coelenterazine: Coelenterazine () itself, Coelenteramide (), and Coelenteramine (). We have found that derivatives possess variable anticancer activity toward gastric and lung cancer.

View Article and Find Full Text PDF

Photodynamic therapy (PDT) is an anticancer therapeutic modality with remarkable advantages over more conventional approaches. However, PDT is greatly limited by its dependence on external light sources. Given this, PDT would benefit from new systems capable of a light-free and intracellular photodynamic effect.

View Article and Find Full Text PDF

While photodynamic therapy is known for significant advantages over conventional cancer therapies, its dependence on light has limited it to treating tumors on or just under the skin or on the outer lining of organs/cavities. Herein, we have developed a single-molecule photosensitizer capable of intracellular self-activation and with potential tumor-selectivity due to a chemiluminescent reaction involving only a cancer marker. Thus, the photosensitizer is directly chemiexcited to a triplet excited state capable of generating singlet oxygen, without requiring either a light source or any catalyst/co-factor.

View Article and Find Full Text PDF

As part of our program on synthesis of labeled vitamin D metabolites and analogs, we describe here an efficient and versatile synthetic approach to 28,28,28-trideutero- 25-hydroxydihydrotachysterol where isotopic labeling was incorporated stereoselectively in the last step of the synthesis. This deuterated compound will allow the study this analog in vitro or in vivo and to measure AT10-like compounds in serum by LC-MS/MS.

View Article and Find Full Text PDF

A convergent approach to 25S,26-dihydroxyvitamin D (1) has been developed in our laboratories. The A-ring and the CD-fragment are constructed from ergocalciferol and Inhoffen-Lythgoe diol, respectively. The triene system is assembled by a Wittig-Horner coupling.

View Article and Find Full Text PDF

A new approach to 19-nor-A-ring phosphine oxide 5 together with a convergent synthesis of the vitamin D analogue 1α,25-dihydroxy-19-norvitamin D (3) have been developed. The 19-nor-A-ring is constructed from (S)-carvone. The triene system is assembled by a Wittig-Horner coupling.

View Article and Find Full Text PDF

The first synthesis of 1α,25-dihydroxy-3-epi-vitamin D2 is described. Key steps of the synthesis entail the construction of the triene unit by a Pd-catalyzed ring closure of an enol-triflate (A-ring fragment) followed by a Suzuki-Miyaura coupling with a boronate (upper fragment), and the installation of the methyl group at C-24 by an SN2'-syn displacement of an allylic carbamate. This article is part of a Special Issue entitled 'SI:17th Vitamin D Workshop'.

View Article and Find Full Text PDF