Publications by authors named "Pascal Villa"

The use of plant-based remedies in traditional medecine to combat bacterial infections has been scientifically studied. As part of an ongoing research for the discovery of new therapeutic options to treat bacterial infections, Ammoniacum gum resin from Ferula communis L. roots was explored.

View Article and Find Full Text PDF

Fluorogenic dimers enable background-free imaging of biological targets under wash-free conditions owing to a strong fluorescence enhancement in the apolar cell microenvironment. However, it is crucial that the imaging probe interacts solely with the target receptor to avoid nonspecific interactions and ensure detection with a high signal-to-noise ratio. Herein, we describe a convenient and rapid approach for the synthesis of various functionalized cyanine dyes by click chemistry allowing the fine-tuning of the physicochemical and fluorogenic properties of the dimers.

View Article and Find Full Text PDF

Fluorogenic dimers with polarity-sensitive folding are powerful probes for live-cell bioimaging. They switch on their fluorescence only after interacting with their targets, thus leading to a high signal-to-noise ratio in wash-free bioimaging. We previously reported the first near-infrared fluorogenic dimers derived from cyanine 5.

View Article and Find Full Text PDF

G protein-coupled receptor associated sorting protein 1 (GPRASP1) belongs to a family of 10 proteins that display sequence homologies in their C-terminal region. Several members including GPRASP1 also display a short repeated sequence called the GASP motif that is critically involved in protein-protein interactions with G protein-coupled receptors (GPCRs). Here, we characterized anti-GASP motif antibodies and investigated their potential inhibitory functions.

View Article and Find Full Text PDF

Herein, we describe a catalyst-free thia-Diels-Alder cycloaddition for the chemoselective labeling of fully deprotected phosphonodithioester-peptides in solution with fluorophores functionalized with an exocyclic diene. The reaction was optimized on the model tripeptide containing a lysine residue, which enabled its rapid and straightforward labeling with three different fluorophores (fluorescein, lissamine rhodamine B, and squaraine) in very mild conditions (HO/PrOH, 37 °C, 1 h). The reaction was then successfully applied to the chemoselective labeling of fully deprotected apelin-13 with squaraine dye.

View Article and Find Full Text PDF

We here describe a computational approach (POEM: Pocket Oriented Elaboration of Molecules) to drive the generation of target-focused libraries while taking advantage of all publicly available structural information on protein-ligand complexes. A collection of 31 384 PDB-derived images with key shapes and pharmacophoric properties, describing fragment-bound microenvironments, is first aligned to the query target cavity by a computer vision method. The fragments of the most similar PDB subpockets are then directly positioned in the query cavity using the corresponding image transformation matrices.

View Article and Find Full Text PDF

Osteosarcoma (OS) is the most common primary bone cancer, where the overall 5-year surviving rate is below 20% in resistant forms. Accelerating cures for those poor outcome patients remains a challenge. Nevertheless, several studies of agents targeting abnormal cancerous pathways have yielded disappointing results when translated into clinic because of the lack of accurate OS preclinical modeling.

View Article and Find Full Text PDF

Inhibiting receptor tyrosine kinases is commonly achieved by two main strategies targeting either the intracellular kinase domain by low molecular weight compounds or the extracellular ligand-binding domain by monoclonal antibodies. Identifying small molecules able to inhibit RTKs at the extracellular level would be highly desirable to gain exquisite selectivity but is believed to be challenging owing to the size of RTK endogenous ligands (cytokines, growth factors) and the topology of RTK extracellular domains. We here report the high-throughput screening of the French Chemical Library (48K compounds) for extracellular inhibitors of the Fms-like tyrosine kinase 3 (FLT3) receptor tyrosine kinase, by a homogeneous time-resolved fluorescence competition assay.

View Article and Find Full Text PDF

Ethnopharmacological Relevance: Leishmaniasis are widely distributed among tropical and subtropical countries, and remains a crucial health issue in Amazonia. Indigenous groups across Amazonia have developed abundant knowledge about medicinal plants related to this pathology.

Aim Of The Study: We intent to explore the weight of different pharmacological activities driving taxa selection for medicinal use in Amazonian communities.

View Article and Find Full Text PDF

Neuropathic pain arises as a consequence of a lesion or disease affecting the somatosensory nervous system. It is accompanied by neuronal and non-neuronal alterations, including alterations in intracellular second messenger pathways. Cellular levels of 3',5'-cyclic adenosine monophosphate (cAMP) and 3',5'-cyclic guanosine monophosphate (cGMP) are regulated by phosphodiesterase (PDE) enzymes.

View Article and Find Full Text PDF

Current therapeutic treatments improving the impaired transportation of oxygen in acute respiratory distress syndrome (ARDS) have been found to be relevant and beneficial for the therapeutic treatment of COVID-19 patients suffering from severe respiratory complications. Hence, we report the preclinical and the preliminary results of the Phase I/II clinical trial of LEAF-4L6715, a liposomal nanocarrier encapsulating the kosmotropic agent trans-crocetin (TC), which, once injected, enhance the oxygenation of vascular tissue and therefore has the potential to improve the clinical outcomes of ARDS and COVID-19 in severely impacted patients. We demonstrated that the liposomal formulation enabled to increase from 30 min to 48 h the reoxygenation properties of free TCs in vitro in endothelial cells, but also to improve the half-life of TC by 6-fold in healthy mice.

View Article and Find Full Text PDF

The local lipid microenvironment of transmembrane receptors is an essential factor in G protein coupled receptor (GPCR) signaling. However, tools are currently missing for studying endogenously expressed GPCRs in primary cells and tissues. Here, we introduce fluorescent environment-sensitive GPCR ligands for probing the microenvironment of the receptor in living cells using fluorescence microscopy under no-wash conditions.

View Article and Find Full Text PDF

Background: Chronic lung allograft dysfunction (CLAD) and its obstructive form, the obliterative bronchiolitis (OB), are the main long-term complications related to high mortality rate postlung transplantation. CLAD treatment lacks a significant success in survival. Here, we investigated a new strategy through inhibition of the proinflammatory mitogen- and stress-activated kinase 1 (MSK1) kinase.

View Article and Find Full Text PDF

Mitogen- and Stress-Activated Kinase 1 (MSK1) is a nuclear kinase, taking part in the activation pathway of the pro-inflammatory transcription factor NF-kB and is demonstrating a therapeutic target potential in inflammatory diseases such as asthma, psoriasis and atherosclerosis. To date, few MSK1 inhibitors were reported. In order to identify new MSK1 inhibitors, a screening of a library of low molecular weight compounds was performed, and the results highlighted the 6-phenylpyridin-2-yl guanidine (compound , IC~18 µM) as a starting hit for structure-activity relationship study.

View Article and Find Full Text PDF

The Balaruc-les-Bains' thermal mud was found to be colonized predominantly by microorganisms, with cyanobacteria constituting the primary organism in the microbial biofilm observed on the mud surface. The success of cyanobacteria in colonizing this specific ecological niche can be explained in part by their taxa-specific adaptation capacities, and also the diversity of bioactive natural products that they synthesize. This array of components has physiological and ecological properties that may be exploited for various applications.

View Article and Find Full Text PDF

(1) Background: Human exposure to organophosphorus compounds employed as pesticides or as chemical warfare agents induces deleterious effects due to cholinesterase inhibition. One therapeutic approach is the reactivation of inhibited acetylcholinesterase by oximes. While currently available oximes are unable to reach the central nervous system to reactivate cholinesterases or to display a wide spectrum of action against the variety of organophosphorus compounds, we aim to identify new reactivators without such drawbacks.

View Article and Find Full Text PDF

Background: Pediatric high-grade gliomas (pHGGs) are facing a very dismal prognosis and representative pre-clinical models are needed for new treatment strategies. Here, we examined the relevance of collecting functional, genomic, and metabolomics data to validate patient-derived models in a hypoxic microenvironment.

Methods: From our biobank of pediatric brain tumor-derived models, we selected 11 pHGGs driven by the histone mutation.

View Article and Find Full Text PDF

Numerous proteins can coalesce into amyloid self-assemblies, which are responsible for a class of diseases called amyloidoses, but which can also fulfill important biological functions and are of great interest for biotechnology. Amyloid aggregation is a complex multi-step process, poorly prone to detailed structural studies. Therefore, small molecules interacting with amyloids are often used as tools to probe the amyloid aggregation pathway and in some cases to treat amyloidoses as they prevent pathogenic protein aggregation.

View Article and Find Full Text PDF

Oxytocin (OT) and its receptor (OT-R) are implicated in the etiology of autism spectrum disorders (ASD), and OT-R is a potential target for therapeutic intervention. Very few nonpeptide oxytocin agonists have currently been reported. Their molecular and in vivo pharmacology remain to be clarified, and none of them has been shown to be efficient in improving social interaction in animal models relevant to ASD.

View Article and Find Full Text PDF

We previously reported Chalcone-4 (1) that binds the chemokine CXCL12, not its cognate receptors CXCR4 or CXCR7, and neutralizes its biological activity. However, this neutraligand suffers from limitations such as poor chemical stability, solubility, and oral activity. Herein, we report on the discovery of pyrimidinone 57 (LIT-927), a novel neutraligand of CXCL12 which displays a higher solubility than 1 and is no longer a Michael acceptor.

View Article and Find Full Text PDF
Article Synopsis
  • Glioblastoma is a complex brain tumor with cancer stem-like cells that contribute to treatment resistance and poor patient outcomes.
  • Recent research found that the laxative Bisacodyl can effectively target these resistant stem-like cells in acidic environments, leading to tumor shrinkage and improved survival in glioblastoma models.
  • The study identified the WNK1 protein kinase and its associated pathways as key players in Bisacodyl's cytotoxic effects, revealing new potential targets for glioblastoma treatment.
View Article and Find Full Text PDF

Myotonic dystrophy (DM) is a dominantly inherited neuromuscular disorder caused by expression of mutant myotonin-protein kinase () transcripts containing expanded CUG repeats. Pathogenic RNA sequesters the muscleblind-like (MBNL) proteins, causing alterations in metabolism of various RNAs. Cardiac dysfunction represents the second most common cause of death in DM type 1 (DM1) patients.

View Article and Find Full Text PDF

4-phenylpyridin-2-yl-guanidine (5b): a new inhibitor of the overproduction of pro-inflammatory cytokines (TNFα and Il1β) was identified from a high-throughput screening of a chemical library on human peripheral blood mononuclear cells (PBMCs) after LPS stimulation. Derivatives, homologues and rigid mimetics of 5b were designed and synthesized, and their cytotoxicity and ability to inhibit TNFα overproduction were evaluated. Among them, compound 5b and its mimetic 12 (2-aminodihydroquinazoline) showed similar inhibitory activities, and were evaluated in vivo in models of lung inflammation and neuropathic pain in mice.

View Article and Find Full Text PDF

Analogues of apelin-13 carrying diverse spacers and an ad hoc DY647-derived fluorophore were designed and synthesized by chemoselective acylation of α-hydrazinopeptides. The resulting probes retain very high affinity and efficacy for both the wild-type and SNAP-tagged apelin receptor (ApelinR). They give a time-resolved FRET (TR-FRET) signal with rare-earth lanthanides used as donor fluorophores grafted onto the SNAP-tagged receptor.

View Article and Find Full Text PDF

Ethnopharmacological Relevance: Psidium acutangulum Mart. ex DC is a small tree used by the Wayana Amerindians from the Upper-Maroni in French Guiana for the treatment of malaria.

Aim Of The Study: In a previous study, we highlighted the in vitro antiplasmodial, antioxidant and anti-inflammatory potential of the traditional decoction of P.

View Article and Find Full Text PDF