Publications by authors named "Laetitia Chezeau"

Titanium dental implants have common clinical applications due to their biocompatibility, biophysical and biochemical characteristics. Although current titanium is thought to be safe and beneficial for patients, there are several indications that it may release toxic metal ions or metal nanoparticles from its alloys into the surrounding environment, which could lead to clinically relevant complications including toxic reactions as well as immune dysfunctions. Hence, an adequate selection and testing of medical biomaterial with outstanding properties are warranted.

View Article and Find Full Text PDF

The osseointegration of implants is defined as the direct anatomical and functional connection between neoformed living bone and the surface of a supporting implant. The biological compatibility of implants depends on various parameters, such as the nature of the material, chemical composition, surface topography, chemistry and loading, surface treatment, and physical and mechanical properties. In this context, the objective of this study is to evaluate the biocompatibility of rough (Ra = 1 µm) and smooth (Ra = 0 µm) surface conditions of yttria-zirconia (Y-TZP) discs compared to pure zirconia (ZrO) discs by combining a classical toxicological test, morphological observations by SEM, and a transcriptomic analysis on an in vitro model of human Saos-2 bone cells.

View Article and Find Full Text PDF

The study presented here aimed to assess the ability of Desulfovibrio fairfieldensis bacteria to adhere to and form biofilm on the structure of titanium used in implants. D. fairfieldensis was found in the periodontal pockets in the oral environment, indicating that these bacteria can colonize the implant-bone interface and consequently cause bone infection and implant corrosion.

View Article and Find Full Text PDF

Although aging is associated with a higher risk of developing respiratory pathologies, very few studies have assessed the impact of age on the adverse effects of inhaled nanoparticles. Using conventional and transcriptomic approaches, this study aimed to compare in young (12-13-week-old) and elderly (19-month-old) fisher F344 rats the pulmonary toxicity of an inhaled nanostructured aerosol of titanium dioxide (TiO). Animals were nose-only exposed to this aerosol at a concentration of 10 mg/m for 6 h per day, 5 days per week for 4 weeks.

View Article and Find Full Text PDF
Article Synopsis
  • Investigations of the biological effects of nanoparticles (NP) usually happen in lab settings or on rodents, but measuring the real cellular dose is challenging due to NP sedimentation.
  • Researchers exposed rat macrophages to TiO2 nanoparticles in a more realistic air-liquid interface (ALI) setup and analyzed gene expression changes after exposure.
  • They identified 126 differentially expressed genes, with some previously linked to NP exposure, and validated that Ccl4 gene expression serves as a positive exposure marker.
View Article and Find Full Text PDF

There are many studies concerning titanium dioxide (TiO) nanoparticles (NP) toxicity. Nevertheless, there are few publications comparing and exposure, and even less comparing air-liquid interface exposure (ALI) with other and exposures. The identification and validation of common markers under different exposure conditions are relevant for the development of smart and quick nanotoxicity tests.

View Article and Find Full Text PDF

The pulmonary toxicological properties of inhaled titanium dioxide were studied using bronchoalveolar lavage fluid (BALF) cytology and proteomics analyses. Fischer 344 rats were exposed to 10 mg/m of TiO nanostructured aerosol by nose-only inhalation for 6 h/day, 5 days/week for 4 weeks. Lung samples were collected up to 180 post-exposure days.

View Article and Find Full Text PDF

Multi-walled carbon nanotubes (MWCNTs), which vary in length, diameter, functionalization and specific surface area, are used in diverse industrial processes. Since these nanomaterials have a high aspect ratio and are biopersistant in the lung, there is a need for a rapid identification of their potential health hazard. We assessed in Sprague-Dawley rats the pulmonary toxicity of two pristine MWCNTs (the "long and thick" NM-401 and the "short and thin" NM-403) following either intratracheal instillation or 4-week inhalation in order to gain insights into the predictability and intercomparability of the two methods.

View Article and Find Full Text PDF

The number of workers potentially exposed to nanoparticles (NPs) during industrial processes is increasing, although the toxicological properties of these compounds still need to be fully characterized. As NPs may be aerosolized during industrial processes, inhalation represents their main route of occupational exposure. Here, the short- and long-term pulmonary toxicological properties of titanium dioxide were studied, using conventional and molecular toxicological approaches.

View Article and Find Full Text PDF
Article Synopsis
  • Glioblastoma is a complex brain tumor with cancer stem-like cells that contribute to treatment resistance and poor patient outcomes.
  • Recent research found that the laxative Bisacodyl can effectively target these resistant stem-like cells in acidic environments, leading to tumor shrinkage and improved survival in glioblastoma models.
  • The study identified the WNK1 protein kinase and its associated pathways as key players in Bisacodyl's cytotoxic effects, revealing new potential targets for glioblastoma treatment.
View Article and Find Full Text PDF