Publications by authors named "Pascal J Jacques"

Biodegradable intravascular stents offer a promising alternative to permanent stents for treating atherosclerosis-related artery narrowing by potentially avoiding long-term complications. Identifying materials that degrade harmlessly and uniformly at a suitable rate is crucial. This study evaluated an advanced zinc alloy (Zn-Ag-Cu-Mn-Zr) alongside pure iron and pure zinc, using a simplified stent model of metallic wires implanted in the rat aorta.

View Article and Find Full Text PDF

Sustainable energy production, inherently transient and non-uniformly distributed around the world, requires the rapid development of sustainable energy storage technologies. Recently, pure iron powder was proposed as a high-energy density carrier. While promising, challenges are faced, such as nanoparticle emissions, micro-explosions or cavitation.

View Article and Find Full Text PDF

In vitro testing for evaluating degradation mode and rate of candidate biodegradable metals to be used as intravascular stents is crucial before going to in vivo animal models. In this study, we show that X-ray microfocus computed tomography (microCT) presents a key added value to visualize degradation mode and to evaluate degradation rate and material surface properties in 3D and at high resolution of large regions of interest. The in vitro degradation behavior of three candidate biodegradable stent materials was evaluated: pure iron (Fe), pure zinc (Zn), and a quinary Zn alloy (ZnAgCuMnZr).

View Article and Find Full Text PDF

The treatment of early onset scoliosis using surgical growing rods suffers from high failure rate. Fatigue resistance can be improved by inducing compressive residual stresses within the near surface region. An in-depth investigation of the residual stresses profile evolution is performed through the sequence of material processing steps followed by surgeons handling operations, in connection to material properties.

View Article and Find Full Text PDF

High-entropy alloys have exhibited unusual materials properties. The stability of equimolar single-phase solid solution of five or more elements is supposedly rare and identifying the existence of such alloys has been challenging because of the vast chemical space of possible combinations. Herein, based on high-throughput density-functional theory calculations, we construct a chemical map of single-phase equimolar high-entropy alloys by investigating over 658,000 equimolar quinary alloys through a binary regular solid-solution model.

View Article and Find Full Text PDF

The widely used treatment of early onset scoliosis based on fusionless spinal instrumentation with growing rods suffers from severe complications due to premature rod failure. Only few studies have explored the fracture mechanisms in single rod constructs, while clinical practice urgently needs guidance. The objectives of this study are (i) to determine the failure mechanisms in Ti-6Al-4V alloy, Ti Cp 2 and Co-Cr alloy rods, and (ii) to propose strategies to reduce the risk of rod fracture.

View Article and Find Full Text PDF

Background: Although 1-month dual antiplatelet therapy (DAPT) in patients treated with bare metal stents (BMS) is well established, the optimal duration of DAPT after implantation of a drug-eluting stent (DES) is still a matter of debate. The safety of shortened DAPT is under investigation due to concern about the risk of stent thrombosis. Data on platelet activation and prothrombotic response in vivo following bioresorbable polymer sirolimus-eluting stent (BP-SES) implantation are scarce.

View Article and Find Full Text PDF

The WST-1 assay is the most common test to assess the in vitro cytotoxicity of chemicals. Tetrazolium-based assays can, however, be affected by the interference of tested chemicals, including carbon nanotubes or Mg particles. Here, we report a new interference of Mn materials with the WST-1 assay.

View Article and Find Full Text PDF

Conventional HR-EBSD is attracting much interest due to its ability of measuring relative crystal misorientations and microstresses with great accuracy. However, this technique needs the use of simulated patterns in order to get absolute values of crystal orientation and stresses and thus expand its use to intergranular analyses. Simulation-based approaches have shown many limitations due to the poor correlation with the real patterns specially when Bragg simulations are considered.

View Article and Find Full Text PDF