Publications by authors named "Paolo Francesco Fabene"

The gut microbiota constitutes a complex community of microorganisms (including bacteria, viruses, fungi, and protozoa) within the intestinal tract. Over the years, an increasing number of studies have highlighted the bidirectional communication between the gut microbiota and the central nervous system (CNS), a relationship commonly referred to as the "microbiota-gut-brain axis". In particular, the crosstalk between the gut microbiota and the brain has been associated with the pathogenesis and progression of various CNS disorders.

View Article and Find Full Text PDF

In animal models of epilepsy, cranial surgery is often required to implant electrodes for electroencephalography (EEG) recording. However, electrode implants can lead to the activation of glial cells and interfere with physiological neuronal activity. In this study, we evaluated the impact of epidural electrode implants in the pilocarpine mouse model of temporal lobe epilepsy.

View Article and Find Full Text PDF

Astrocytic networks and gap junctional communication mediated by connexins (Cxs) have been repeatedly implicated in seizures, epileptogenesis, and epilepsy. However, the effect of seizures on Cx expression is controversial. The present study focused on the response of Cxs to status epilepticus (SE), which is in turn an epileptogenic insult.

View Article and Find Full Text PDF

Non-motor symptoms are frequently observed in Parkinson's disease (PD) and precede the onset of motor deficits by years. Among them, neuropsychiatric symptoms, including anxiety, depression, and apathy, are increasingly considered as a major challenge for patients with PD and their caregivers. We recently reported that mice lacking the nuclear factor-κB (NF-κB)/c-Rel protein (c-rel mice) develop an age-dependent PD-like pathology and phenotype characterized by the onset of non-motor symptoms, including constipation and hyposmia, starting at 2 months of age, and motor deficits at 18 months.

View Article and Find Full Text PDF

A bulk of data suggest that the gut microbiota plays a role in a broad range of diseases, including those affecting the central nervous system. Recently, significant differences in the intestinal microbiota of patients with epilepsy, compared to healthy volunteers, have been reported in an observational study. However, an active role of the intestinal microbiota in the pathogenesis of epilepsy, through the so-called "gut-brain axis," has yet to be demonstrated.

View Article and Find Full Text PDF
Article Synopsis
  • Chorea-Acanthocytosis (ChAc) is a serious neurodegenerative disease linked to VPS13A mutations, characterized by neuroinflammation and disrupted autophagy.
  • Research using Vps13a mice models showed that active Lyn tyrosine kinase accumulation contributed to these issues, leading to the identification of potential therapeutic targets.
  • Nilotinib, a specific Lyn kinase inhibitor that crosses the blood-brain barrier, showed promise in improving both blood and neurological symptoms in these mice, suggesting it could be a potential treatment for ChAc patients.
View Article and Find Full Text PDF

Stroke is a leading cause of disability. Nonetheless, the care pathway for stroke rehabilitation takes partially into account the needs of chronic patients. This is due in part to the lack of evidence about the mechanisms of recovery after stroke, together with the poor knowledge of related and influencing factors.

View Article and Find Full Text PDF

Mesenchymal stem cells (MSCs) are multipotent adult cells with self-renewing capacities. MSCs display specific properties, such as the ability to repair damaged tissues, resulting in optimal candidates for cell therapy against degenerative diseases. In addition to the reparative functions of MSCs, growing evidence shows that these cells have potent immunomodulatory and anti-inflammatory properties.

View Article and Find Full Text PDF

Background: The European PharmaCog study (http://www.pharmacog.org) has reported a reduction in delta (1-6 Hz) electroencephalographic (EEG) power (density) during cage exploration (active condition) compared with quiet wakefulness (passive condition) in PDAPP mice (hAPP Indiana V717F mutation) modeling Alzheimer's disease (AD) amyloidosis and cognitive deficits.

View Article and Find Full Text PDF

We have demonstrated previously that activation of either the ET or ET receptor can induce acute electrographic seizures following the intrahippocampal infusion of endothelin-1 (ET-1) in immature (P12) rats. We also demonstrated that activation of the ET receptor is associated with marked focal ischemia, while activation of the ET receptor is not. Exploring the mechanisms underlying seizures induced by these two ET-1 receptor interactions can potentially provide insight into how focal ischemia in immature animals produces seizures and whether ischemiarelated seizures differ from seizures not associated with ischemia.

View Article and Find Full Text PDF

Clinical and experimental studies indicate that muscarinic acetylcholine receptors are potential pharmacological targets for the treatment of neurological diseases. Although these receptors have been described in human, bovine and rat cerebral microvascular tissue, a subtype functional characterization in mouse brain endothelium is lacking. Here, we show that all muscarinic acetylcholine receptors (M-M) are expressed in mouse brain microvascular endothelial cells.

View Article and Find Full Text PDF

Current antiepileptic drugs have limited efficacy and provide little or no benefits in 30% of the patients. Given that a role for brain inflammation in epilepsy has been repeatedly reported in recent years, the potential of anti-inflammatory drugs should be explored in depth, as they may provide new therapeutical approaches in preventing or reducing epileptogenesis. Here, we review preclinical (both in vivo and in vitro) and clinical epilepsy studies in which nonsteroidal antiinflammatory drugs (NSAIDs), i.

View Article and Find Full Text PDF

Resting state electroencephalographic (EEG) rhythms reflect the fluctuation of cortical arousal and vigilance in a typical clinical setting, namely the EEG recording for few minutes with eyes closed (i.e., passive condition) and eyes open (i.

View Article and Find Full Text PDF

Aim: Qtracker(®)800 Vascular labels (Qtracker(®)800) are promising biomedical tools for high-resolution vasculature imaging; their effects on mouse and human endothelia, however, are still unknown.

Materials & Methods: Qtracker(®)800 were injected in Balb/c mice, and brain endothelium uptake was investigated by transmission electron microscopy 3-h post injection. We then investigated, in vitro, the effects of Qtracker(®)800 exposure on mouse and human endothelial cells by calcium imaging.

View Article and Find Full Text PDF

Recent findings indicate that fingolimod, the first oral drug approved for the treatment of multiple sclerosis (MS), acts as a direct inhibitor of histone deacetylases (HDACs) and enhances the production of brain-derived neurotrophic factor (BDNF) in the CNS. Both mechanisms are relevant to the pathophysiology and treatment of major depression. We examined the antidepressant activity of fingolimod in mice subjected to chronic unpredictable stress (CUS), a model of reactive depression endowed with face and pharmacological validity.

View Article and Find Full Text PDF

The conventional notion that neurons are exclusively responsible for brain signaling is increasingly challenged by the idea that brain function in fact depends on a complex interplay between neurons, glial cells, vascular endothelium, and immune-related blood cells. Recent data demonstrates that neuronal activity is profoundly affected by an entire cellular and extracellular 'orchestra', the so-called neurovascular unit (NVU). Among the 'musical instruments' of this orchestra, there may be molecules long-known in biomedicine as important mediators of inflammatory and immune responses in the organism, as well as non-neuronal cells, e.

View Article and Find Full Text PDF

Chronic pain is a debilitating condition with major socioeconomic impact, whose neurobiological basis is still not clear. An involvement of the neurovascular unit (NVU) has been recently proposed. In particular, the blood-brain barrier (BBB) and blood-spinal cord barrier (BSCB), two NVU key players, may be affected during the development of chronic pain; in particular, transient permeabilization of the barrier is suggested by several inflammatory- and nerve-injury-based pain models, and we argue that the clarification of molecular BBB/BSCB permeabilization events will shed new light in understanding chronic pain mechanisms.

View Article and Find Full Text PDF

Different kinds of challenge can alter spontaneous ongoing electroencephalographic (EEG) rhythms in animal models, thus providing paradigms to evaluate treatment effects in drug discovery. The effects of challenges represented by pharmacological agents, hypoxia, sleep deprivation and transcranial magnetic stimulation (TMS) on EEG rhythms are here reviewed to build a knowledge platform for innovative translational models for drug discovery in Alzheimer's disease (AD). It has been reported that antagonists of cholinergic neurotransmission cause synchronisation of spontaneous ongoing EEG rhythms in terms of enhanced power of EEG low frequencies and decreased power of EEG high frequencies.

View Article and Find Full Text PDF

Activation of the nuclear factor κB/c-Rel can increase neuronal resilience to pathological noxae by regulating the expression of pro-survival manganese superoxide dismutase (MnSOD, now known as SOD2) and Bcl-xL genes. We show here that c-Rel-deficient (c-rel(-/-)) mice developed a Parkinson's disease-like neuropathology with ageing. At 18 months of age, c-rel(-/-) mice exhibited a significant loss of dopaminergic neurons in the substantia nigra pars compacta, as assessed by tyrosine hydroxylase-immunoreactivity and Nissl staining.

View Article and Find Full Text PDF

Pilocarpine-induced seizures in rats provide a widely animal model of temporal lobe epilepsy. Some evidences reported in the literature suggest that at least 1 h of status epilepticus (SE) is required to produce subsequent chronic phase, due to the SE-related acute neuronal damage. However, recent data seems to indicate that neuro-inflammation plays a crucial role in epileptogenesis, modulating secondarily a neuronal insult.

View Article and Find Full Text PDF

The neuron loss characteristic of hippocampal sclerosis in temporal lobe epilepsy patients is thought to be the result of excitotoxic, rather than ischemic, injury. In this study, we assessed changes in vascular structure, gene expression, and the time course of neuronal degeneration in the cerebral cortex during the acute period after onset of pilocarpine-induced status epilepticus (SE). Immediately after 2 hr SE, the subgranular layers of somatosensory cortex exhibited a reduced vascular perfusion indicative of ischemia, whereas the immediately adjacent supragranular layers exhibited increased perfusion.

View Article and Find Full Text PDF

The hydrolipidic ratio (HLR) expresses the amount of water and fat in a tissue. HLR can be studied non-invasively in the living organism and can be mapped in different areas of the body with high spatial and temporal resolution. In the present work we have evaluated the HLR in different adipose tissue depots in young or adult rats using tissue arrays of fat fragments by 1H-spectroscopy.

View Article and Find Full Text PDF