Publications by authors named "Federico Del Gallo"

Alcohol use disorders (AUD) are bidirectionally associated with significant sleep disturbances, yet the underlying neural mechanisms remain poorly understood. The Marchigian Sardinian alcohol Preferring (msP) rat is a validated preclinical model that mirrors several genetic and behavioral traits of patients with AUD. This study aimed to characterize the sleep-wake architecture and EEG spectral activity in naïve msP rats compared to Wistar controls.

View Article and Find Full Text PDF

Epidemiological investigations have indicated that insufficient sleep is prevalent among adolescents, posing a globally underestimated health risk. Sleep fragmentation and sleep loss during adolescence have been linked to concurrent emotional dysregulation and an increase in impulsive, risk-taking behaviors, including a higher likelihood of substance abuse. Among the most widely used substances, alcohol stands as the primary risk factor for deaths and disability among individuals aged 15-49 worldwide.

View Article and Find Full Text PDF

Non-motor symptoms are frequently observed in Parkinson's disease (PD) and precede the onset of motor deficits by years. Among them, neuropsychiatric symptoms, including anxiety, depression, and apathy, are increasingly considered as a major challenge for patients with PD and their caregivers. We recently reported that mice lacking the nuclear factor-κB (NF-κB)/c-Rel protein (c-rel mice) develop an age-dependent PD-like pathology and phenotype characterized by the onset of non-motor symptoms, including constipation and hyposmia, starting at 2 months of age, and motor deficits at 18 months.

View Article and Find Full Text PDF

Electroencephalography (EEG) is a key tool for non-invasive recording of brain activity and the diagnosis of epilepsy. EEG monitoring is also widely employed in rodent models to track epilepsy development and evaluate experimental therapies and interventions. Whereas automated seizure detection algorithms have been developed for clinical EEG, preclinical versions face challenges of inter-model differences and lack of EEG standardization, leaving researchers relying on time-consuming visual annotation of signals.

View Article and Find Full Text PDF

A bulk of data suggest that the gut microbiota plays a role in a broad range of diseases, including those affecting the central nervous system. Recently, significant differences in the intestinal microbiota of patients with epilepsy, compared to healthy volunteers, have been reported in an observational study. However, an active role of the intestinal microbiota in the pathogenesis of epilepsy, through the so-called "gut-brain axis," has yet to be demonstrated.

View Article and Find Full Text PDF
Article Synopsis
  • Chorea-Acanthocytosis (ChAc) is a serious neurodegenerative disease linked to VPS13A mutations, characterized by neuroinflammation and disrupted autophagy.
  • Research using Vps13a mice models showed that active Lyn tyrosine kinase accumulation contributed to these issues, leading to the identification of potential therapeutic targets.
  • Nilotinib, a specific Lyn kinase inhibitor that crosses the blood-brain barrier, showed promise in improving both blood and neurological symptoms in these mice, suggesting it could be a potential treatment for ChAc patients.
View Article and Find Full Text PDF

Mesenchymal stem cells (MSCs) are multipotent adult cells with self-renewing capacities. MSCs display specific properties, such as the ability to repair damaged tissues, resulting in optimal candidates for cell therapy against degenerative diseases. In addition to the reparative functions of MSCs, growing evidence shows that these cells have potent immunomodulatory and anti-inflammatory properties.

View Article and Find Full Text PDF

Sleep is severely impaired in patients with Alzheimer's disease. Amyloid-β deposition in the brain of Alzheimer's disease patients is a key event in its pathogenesis and is associated with disrupted sleep, even before the appearance of cognitive decline. Because soluble amyloid-β oligomers are the key mediators of synaptic and cognitive dysfunction in Alzheimer's disease and impair long-term memory in rodents, the first aim of this study was to test the hypothesis that amyloid-β oligomers would directly impair sleep in mice.

View Article and Find Full Text PDF

Epilepsy diagnosis is complex, requires a team of specialists and relies on in-depth patient and family history, MRI-imaging and EEG monitoring. There is therefore an unmet clinical need for a non-invasive, molecular-based, biomarker to either predict the development of epilepsy or diagnose a patient with epilepsy who may not have had a witnessed seizure. Recent studies have demonstrated a role for microRNAs in the pathogenesis of epilepsy.

View Article and Find Full Text PDF

Temporal lobe epilepsy is the most common drug-resistant form of epilepsy in adults. The reorganization of neural networks and the gene expression landscape underlying pathophysiologic network behavior in brain structures such as the hippocampus has been suggested to be controlled, in part, by microRNAs. To systematically assess their significance, we sequenced Argonaute-loaded microRNAs to define functionally engaged microRNAs in the hippocampus of three different animal models in two species and at six time points between the initial precipitating insult through to the establishment of chronic epilepsy.

View Article and Find Full Text PDF
Article Synopsis
  • - The study explores the role of the GRIN2A gene and its GluN2A subunit in NMDARs, revealing its crucial function in brain development and its link to slow-wave sleep disorders within the epilepsy-aphasia spectrum.
  • - Researchers conducted experiments on Grin2a knockout mice to observe social communication through ultrasonic vocalizations and recorded brain electrical activity during sleep stages using EEG, discovering significant deviations in their sleep patterns.
  • - Findings suggest that the changes in vocal communication and sleep-related electrical activity in Grin2a KO mice resemble symptoms seen in children with epilepsy-aphasia spectrum disorders, supporting their use as a model for studying these conditions.
View Article and Find Full Text PDF

In the heterogeneous hub represented by the lateral hypothalamus, neurons containing the orexin/hypocretin peptides play a key role in vigilance state transitions and wakefulness stability, energy homeostasis, and other functions relevant for motivated behaviors. Orexin neurons, which project widely to the neuraxis, are innervated by multiple extra- and intra-hypothalamic sources. A key property of the adaptive capacity of orexin neurons is represented by daily variations of activity, which is highest in the period of the animal's activity and wakefulness.

View Article and Find Full Text PDF

Sleep is frequently altered in systemic infections as a component of sickness behavior in response to inflammation. Sleepiness in sickness behavior has been extensively investigated. Much less attention has instead been devoted to sleep and wake alterations in brain infections.

View Article and Find Full Text PDF

Among environmental factors that may affect on brain function, some nutrients and particularly n-3 polyunsaturated fatty acids (n-3 PUFA) are required for optimal brain development. Their effects on cognitive functions, however, are still unclear, and studies in humans and rodents have yielded contradictory results. We used a non-human primate model, the grey mouse lemur, phylogenetically close to human.

View Article and Find Full Text PDF

Orexin (OX)/hypocretin-containing neurons are main regulators of wakefulness stability, arousal, and energy homeostasis. Their activity varies in relation to the animal's behavioral state. We here tested whether such variation is subserved by synaptic plasticity phenomena in basal conditions.

View Article and Find Full Text PDF

Genetic prion diseases are degenerative brain disorders caused by mutations in the gene encoding the prion protein (PrP). Different PrP mutations cause different diseases, including Creutzfeldt-Jakob disease (CJD), Gerstmann-Sträussler-Scheinker (GSS) syndrome and fatal familial insomnia (FFI). The reason for this variability is not known.

View Article and Find Full Text PDF

Fatal familial insomnia (FFI) and a genetic form of Creutzfeldt-Jakob disease (CJD178) are clinically different prion disorders linked to the D178N prion protein (PrP) mutation. The disease phenotype is determined by the 129 M/V polymorphism on the mutant allele, which is thought to influence D178N PrP misfolding, leading to the formation of distinctive prion strains with specific neurotoxic properties. However, the mechanism by which misfolded variants of mutant PrP cause different diseases is not known.

View Article and Find Full Text PDF