Annu Int Conf IEEE Eng Med Biol Soc
July 2022
Fabrication of conductive and bioactive microdevices has garnered tremendous attention in the emerging biomedical fields, particularly organic bioelectronics and biosensing. Direct laser 3D printing based on two-photon polymerization (TPP) has shown great promise in construction of well-defined and multi-functional microdevices. Herein, we present a novel photosensitive resin for fabrication of highly conductive and bioactive microstructures via TPP.
View Article and Find Full Text PDFIn recent years, 3D printing of electronics have received growing attention due to their potential applications in emerging fields such as nanoelectronics and nanophotonics. Multiphoton lithography (MPL) is considered the state-of-the-art amongst the microfabrication techniques with true 3D fabrication capability owing to its excellent level of spatial and temporal control. Here, a homogenous and transparent photosensitive resin doped with an organic semiconductor material (OS), which is compatible with MPL process, is introduced to fabricate a variety of 3D OS composite microstructures (OSCMs) and microelectronic devices.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
November 2021
Development of soft and conductive micro devices represents a demanding research topic in various biomedical applications, particularly organic bioelectronics. Among various fabrication methods, two-photon polymerization (2PP) using a wide range of photocurable inks is a promising 3D printing technique for construction of structures in submicron resolution. Herein, we introduce a novel conductive photosensitive resin by using poly (3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) and poly(ethylene glycol) diacrylate), and fabricate 3D conductive polymeric microstructures via 2PP.
View Article and Find Full Text PDF