The understanding of sex determination and differentiation in animals has recently made remarkable strides through the use of advanced research tools. At the gene level, the Mab-3-related transcription factor () gene family, which encodes for the typical DNA-binding doublesex/Mab-3 (DM) domain in their protein, is known for its contribution to sex determination and differentiation in insects. In this study, DNA-binding DM domain screening has identified eight transcripts from transcriptomic that encode proteins containing one conserved DNA-binding DM domain.
View Article and Find Full Text PDFRNA interference (RNAi)-based pesticides are promising novel pest management products that might reduce environmental impacts compared to other pesticides. Their sequence-guided mode of action facilitates a high species-selectivity, preventing harm on non-target organisms. However, there is currently no consensus on the minimum needed sequence similarity for efficient RNAi in insects and studies have shown that adverse effects in non-targets cannot always be ruled out a priori.
View Article and Find Full Text PDFBanana weevil () is the most devastating pest of banana and plantain worldwide, yet current control measures are neither effective, sustainable, nor environmentally sound, and no resistant farmer-preferred cultivars are known to date. In this paper, we examined the ability to induce RNA interference (RNAi) in the banana weevil via feeding. We first developed an agar- and banana corm (rhizome) flour-based artificial diet in a multi-well plate setup that allowed the banana weevils to complete their life cycle from egg through the larval instars to the pupal stage in an average period of 53 days.
View Article and Find Full Text PDFLepidopteran insects are highly refractory to oral RNA interference (RNAi). Degradation, impaired cellular uptake and intracellular transport of double-stranded RNA (dsRNA) are considered the major factors responsible for the reduced RNAi efficiency in these insects. In this study, the potential of lectins to improve dsRNA delivery and RNAi efficacy was evaluated.
View Article and Find Full Text PDFCommun Biol
April 2021
Double-stranded RNAs (dsRNAs) represent a promising class of biosafe insecticidal compounds. We examined the ability to induce RNA interference (RNAi) in the pollen beetle Brassicogethes aeneus via anther feeding, and compared short-term (3 d) to chronic (17 d) feeding of various concentrations of dsRNA targeting αCOP (dsαCOP). In short-term dsαCOP feeding, only the highest concentration resulted in significant reductions in B.
View Article and Find Full Text PDFInsect Biochem Mol Biol
May 2021
Variability in RNA-interference (RNAi) efficacy among different insect orders poses a big hurdle in the development of RNAi-based pest control strategies. The activity of double-stranded ribonucleases (dsRNases) in the digestive canal of insects can be one of the critical factors affecting oral RNAi efficacy. Here, the involvement of these dsRNases in the southern green stinkbug was investigated.
View Article and Find Full Text PDFIn insects, the identity of body segments is controlled by homeotic genes and the knockdown of these genes during embryogenesis can lead to an abnormal development and/or atypical phenotypes. The main goal of this study was to investigate the involvement of labial (lab), deformed (dfd), sex comb reduced (scr), extradenticle (exd) and proboscipedia (pb) in rostrum development in the Neotropical brown stink bug Euschistus heros, using parental RNAi (pRNAi). To achieve this objective, 10-days-old adult females were first microinjected with double-stranded RNAs (dsRNA) targeting these five genes.
View Article and Find Full Text PDFSpray-induced gene silencing (SIGS) is a potential strategy for agricultural pest management, whereby nucleotide sequence-specific double-stranded RNA (dsRNA) can be sprayed onto a crop; the desired effect being a consumption of dsRNA by the target pest, and subsequent gene silencing-induced mortality. Nucleotide sequence-specificity is the basis for dsRNA's perceived biosafety. A biosafe approach to pollen beetle () management in oilseed rape () agroecosystems is needed.
View Article and Find Full Text PDFPest Manag Sci
January 2021
Background: The southern green stinkbug, Nezara viridula (Hemiptera: Pentatomidae), is an important emerging polyphagous pest infesting soybean in the United States, Brazil and Argentina. The indiscriminate use of synthetic insecticides to control stinkbugs has limited the effectiveness of current management strategies. Alternatively, RNA interference (RNAi) has emerged as a novel mode of action to control pests in an eco-friendly manner.
View Article and Find Full Text PDFThe use of RNA interference (RNAi) enables the silencing of target genes in plants or plant-dwelling organisms, through the production of double stranded RNA (dsRNA) resulting in altered plant characteristics. Expression of properly synthesized dsRNAs in plants can lead to improved crop quality characteristics or exploit new mechanisms with activity against plant pests and pathogens. Genetically modified (GM) crops exhibiting resistance to viruses or insects expression of dsRNA have received authorization for cultivation outside Europe.
View Article and Find Full Text PDFIn this editorial for the Special Issue on 'RNAi in insect pest control', three important applications of RNA interference (RNAi) in insects are briefly discussed and linked to the different studies published in this Special Issue. The discovery of the RNAi mechanism revolutionized entomological research, as it presented researchers with a tool to knock down genes, which is easily applicable in a wide range of insect species. Furthermore, RNAi also provides crop protection with a novel and promising pest control mode-of-action.
View Article and Find Full Text PDFis economically a very important species. Recently, promising culture attempts have been made, but a major problem is the uncontrollable mortality during the grow-out phase. As of yet, the life cycle of is not closed in captivity so wild-caught individuals are used for further rearing.
View Article and Find Full Text PDFFront Plant Sci
April 2020
Exploiting the RNA interference (RNAi) gene mechanism to silence essential genes in pest insects, leading to toxic effects, has surfaced as a promising new control strategy in the past decade. While the first commercial RNAi-based products are currently coming to market, the application against a wide range of insect species is still hindered by a number of challenges. In this review, we discuss the current status of these RNAi-based products and the different delivery strategies by which insects can be targeted by the RNAi-triggering double-stranded RNA (dsRNA) molecules.
View Article and Find Full Text PDFFacing current climate challenges and drastically reduced chemical options for plant protection, the exploitation of RNA interference (RNAi) as an agricultural biotechnology tool has unveiled possible new solutions to the global problems of agricultural losses caused by pests and other biotic and abiotic stresses. While the use of RNAi as a tool in agriculture is still limited to a few transgenic crops, and only adopted in restricted parts of the world, scientists and industry are already seeking innovations in leveraging and exploiting the potential of RNAi in the form of RNA-based biocontrol compounds for external applications. Here, we highlight the expanding research and development pipeline, commercial landscape and regulatory environment surrounding the pursuit of RNA-based biocontrol compounds with improved environmental profiles.
View Article and Find Full Text PDFDouble-stranded RNA (dsRNA) molecules of viral origin trigger a post-transcriptional gene-silencing mechanism called RNA interference (RNAi). Specifically, virally derived dsRNA is recognized and cleaved by the enzyme Dicer2 into short interfering RNAs (siRNAs), which further direct sequence-specific RNA silencing, ultimately silencing replication of the virus. Notably, RNAi can also be artificially triggered by the delivery of gene-specific dsRNA, thereby leading to endogenous gene silencing.
View Article and Find Full Text PDFPest Manag Sci
November 2019
Background: With the growing number of available aphid genomes and transcriptomes, an efficient and easy-to-adapt tool for gene function study is urgently required. RNA interference (RNAi), as a post-transcriptional gene silencing mechanism, is important as a research tool for determining gene functions and has potential as a novel insect control strategy. However, these applications have been hampered by the lack of effective dsRNA delivery approaches in aphids.
View Article and Find Full Text PDFInsect Biochem Mol Biol
July 2019
RNA interference (RNAi) refers to the process of suppression of gene expression in eukaryotes, which has a great potential for the control of pest and diseases. Unfortunately, the efficacy of this technology is limited or at best variable in some insects. In the African sweet potato weevil (SPW) Cylas puncticollis, a devastating pest that affects the sweet potato production in Sub-Saharan Africa (SSA), the RNAi response was highly efficient when dsRNA was delivered by injection, but it showed a reduced response by oral feeding.
View Article and Find Full Text PDFThe pea aphid, , is an important agricultural pest and biological model organism, and RNA interference (RNAi) is an important tool for functional genomics and for insect pest management. However, the efficiency of RNAi in pea aphids is variable, limiting its application in aphids. In this study, we present optimized conditions for inducing and increasing the gene silencing efficiency of RNAi in pea aphids.
View Article and Find Full Text PDFArch Insect Biochem Physiol
February 2019
Whiteflies cause considerable losses to crops, directly by feeding, and indirectly by transmission of viruses. The current control methods consist of a combination of different control tactics, mainly still relying on unsafe and non-ecofriendly chemical control. RNA interference (RNAi) is a post-transcriptional gene-silencing strategy in which double-stranded RNA (dsRNA), corresponding specifically to a target gene, is introduced in a target organism.
View Article and Find Full Text PDFBackground: The Neotropical stink bug Euschistus heros is a major pest in soybean fields. Development of highly species-specific pesticides based on RNA interference (RNAi) could provide a new sustainable and environmentally friendly control strategy.
Results: Here, the potential of RNAi as a pest control tool against E.