Publications by authors named "Oliver Bannard"

Germinal centers (GCs) form in lymph nodes after immunization or infection to facilitate antibody affinity maturation and memory and plasma cell (PC) development. PC differentiation is thought to involve stringent selection for GC B cells expressing the highest-affinity antigen receptors, but how this plays out during complex polyclonal responses is unclear. We combine temporal lineage tracing with antibody characterization to gain a snapshot of PCs developing during influenza infection.

View Article and Find Full Text PDF

Germinal centers (GCs) that form within lymphoid follicles during antibody responses are sites of massive cell death. Tingible body macrophages (TBMs) are tasked with apoptotic cell clearance to prevent secondary necrosis and autoimmune activation by intracellular self antigens. We show by multiple redundant and complementary methods that TBMs derive from a lymph node-resident, CD169-lineage, CSF1R-blockade-resistant precursor that is prepositioned in the follicle.

View Article and Find Full Text PDF

Resident memory B (BRM) cells develop and persist in the lungs of influenza-infected mice and humans; however, their contribution to recall responses has not been defined. Here, we used two-photon microscopy to visualize BRM cells within the lungs of influenza -virus immune and reinfected mice. Prior to re-exposure, BRM cells were sparsely scattered throughout the tissue, displaying limited motility.

View Article and Find Full Text PDF

Antibody affinity maturation occurs in germinal centers (GCs) through iterative rounds of somatic hypermutation and proliferation in dark zones (DZs) and selection in light zones (LZs). GC B cells exit cell cycle a number of hours before entering LZs; therefore, continued participation in responses requires that they subsequently reenter cell cycle and move back to DZs, a process known as cyclic reentry. Affinity enhancements are thought to arise by B cells having to compete to initiate cyclic reentry each time they enter LZs, with T cell help being a major determinant; however, direct proof is lacking.

View Article and Find Full Text PDF
Article Synopsis
  • Iron deficiency is the most prevalent micronutrient deficiency globally, and its impact on immunity, especially adaptive immunity, is unclear, prompting the study of its effects through various experimental models.* -
  • Research demonstrated that low iron levels, caused by increased hepcidin, significantly hinder immune responses to vaccinations and viral infections in both animal models and humans, indicating a critical role of iron in T cell and antibody function.* -
  • The findings suggest that while hypoferremia serves as an innate response to infection, it can negatively affect the development of adaptive immunity, highlighting the need to address iron deficiency to enhance vaccine efficacy and overall immune health in various populations.*
View Article and Find Full Text PDF

The genes encoding the histone acetyltransferases (HATs) CREBB-binding protein (CREBBP) and EP300 are commonly mutated in germinal-center-derived B cell lymphomas, and their inactivation is thought to contribute to lymphomagenesis. In this issue of Immunity, Meyer et al. (2019) demonstrate that the somatic inactivation of one histone modifying enzyme might leave lymphomas uniquely sensitive to antagonists of the other.

View Article and Find Full Text PDF

Long-lived plasma cells (PCs) develop in germinal centers (GCs) by the differentiation of affinity matured B cells. Antibody affinity maturation involves iterative rounds of somatic hypermutation in dark zones (DZs) and selection in light zones (LZs), however the details of where, when and how PC commitment occurs are not well-understood. Fate bifurcation at the time of selection is one possibility, with the very highest affinity GC B cells differentiating as an alternative to DZ re-entry.

View Article and Find Full Text PDF

Adaptive immunity involves the development of bespoke antibodies in germinal centers (GCs) through immunoglobulin somatic hypermutation (SHM) in GC dark zones (DZs) and clonal selection in light zones (LZs). Accurate selection requires that cells fully replace surface B cell receptors (BCRs) following SHM, but whether this happens before LZ entry is not clear. We found that most GC B cells degrade pre-SHM receptors before leaving the DZ, and that B cells acquiring crippling mutations during SHM rarely reached the LZ.

View Article and Find Full Text PDF

The seminal discovery by Eisen that antibodies undergo improvements in antigen-binding affinity over the course of an immune response led to a long running search for the underlying mechanism. Germinal centers in lymphoid organs are now recognized to be critically involved in this phenomenon, known as antibody affinity maturation. As well as improving in affinity for specific epitopes, some antibody responses maintain or even increase their breadth of antigen-recognition over time.

View Article and Find Full Text PDF

Antibody affinity maturation occurs in germinal centers (GCs) through iterative rounds of somatic hypermutation and selection. Selection involves B cells competing for T cell help based on the amount of antigen they capture and present on their MHC class II (MHCII) proteins. How GC B cells are able to rapidly and repeatedly transition between mutating their B cell receptor genes and then being selected shortly after is not known.

View Article and Find Full Text PDF

The germinal center (GC) is divided into a dark zone (DZ) and a light zone (LZ). GC B cells must cycle between these zones to achieve efficient Ab affinity maturation. Follicular dendritic cells (FDCs) are well characterized for their role in supporting B cell Ag encounter in primary follicles and in the GC LZ.

View Article and Find Full Text PDF

The development of cancer immunotherapy has long been a challenge. Here, we report that prophylactic vaccination with a highly attenuated Trypanosoma cruzi strain expressing NY-ESO-1 (CL-14-NY-ESO-1) induces both effector memory and effector CD8(+) T lymphocytes that efficiently prevent tumor development. However, the therapeutic effect of such a vaccine is limited.

View Article and Find Full Text PDF

Integrin-ligand interactions between germinal center (GC) B cells and Ag-presenting follicular dendritic cells (FDCs) have been suggested to play central roles during GC responses, but their in vivo requirement has not been directly tested. In this study, we show that, whereas integrins αLβ2 and α4β1 are highly expressed and functional on mouse GC B cells, removal of single integrins or their ligands had little effect on B cell participation in the GC response. Combined β2 integrin deficiency and α4 integrin blockade also did not affect the GC response against a particulate Ag.

View Article and Find Full Text PDF
Article Synopsis
  • Germinal center B cells migrate between the dark zone (DZ) and light zone (LZ) for antibody affinity maturation, and research shows that this movement is crucial for their function.
  • CXCR4-deficient B cells, which are stuck in the LZ, are outcompeted by wild-type (WT) cells, suggesting that access to the DZ is important for effective mutation and selection.
  • The study also reveals that a network of CXCL12-expressing reticular cells in the DZ may support these essential functions, highlighting the importance of spatial arrangement in immune responses.
View Article and Find Full Text PDF

Follicular helper T cells (TFH cells) are the prototypic helper T cell subset specialized to enable B cells to form germinal centers (GCs) and produce high-affinity antibodies. We found that expression of microRNAs (miRNAs) by T cells was essential for TFH cell differentiation. More specifically, we show that after immunization of mice with protein, the miRNA cluster miR-17∼92 was critical for robust differentiation and function of TFH cells in a cell-intrinsic manner that occurred regardless of changes in proliferation.

View Article and Find Full Text PDF

Peyer's patches (PPs) play a central role in supporting B cell responses against intestinal antigens, yet the factors controlling B cell passage through these mucosal lymphoid tissues are incompletely understood. We report that, in mixed chimeras, CXCR4-deficient B cells accumulate in PPs compared with their representation in other lymphoid tissues. CXCR4-deficient B cells egress from PPs more slowly than wild-type cells, whereas CXCR5-deficient cells egress more rapidly.

View Article and Find Full Text PDF

Persisting infections are often associated with chronic T cell activation. For certain pathogens, this can lead to T cell exhaustion and survival of what is otherwise a cleared infection. In contrast, for herpesviruses, T cells never eliminate infection once it is established.

View Article and Find Full Text PDF

Persistent viral infections induce the differentiation and accumulation of large numbers of senescent CD8(+) T cells, raising the possibility that repetitive stimulation drives clones of T cells to senesce. It is therefore unclear whether T cell responses are maintained by the self-renewal of Ag-experienced peripheral T cell subsets or by the continuous recruitment of newly generated naive T cells during chronic infections. Using a transgenic mouse model that permits the indelible marking of granzyme B-expressing cells, we found that T cells primed during the initial stages of a persistent murine γ-herpes infection persisted and continued to divide during a latent phase of up to 7 mo.

View Article and Find Full Text PDF

CD8(+) T-cell responses must have at least two components, a replicative cell type that proliferates in the secondary lymphoid tissue and that is responsible for clonal expansion, and cytotoxic cells with effector functions that mediate the resolution of the infection in the peripheral tissues. To confer memory, the response must also generate replication-competent T cells that persist in the absence of antigen after the primary infection is cleared. The current models of memory differentiation differ in regards to whether or not memory CD8(+) T cells acquire effector functions during their development.

View Article and Find Full Text PDF

Models of the differentiation of memory CD8+ T cells that replicate during secondary infections differ over whether such cells had acquired effector function during primary infections. We created a transgenic mouse line that permits mapping of the fate of granzyme B (gzmB)-expressing CD8+ T cells and their progeny by indelibly marking them with enhanced yellow fluorescent protein (EYFP). Virus-specific CD8+ T cells express gzmB within the first 2 days of a primary response to infection with influenza, without impairment of continued primary clonal expansion.

View Article and Find Full Text PDF