Publications by authors named "Michael Meyer-Hermann"

Agent-based models have proven to be useful tools in supporting decision-making processes in different application domains. The advent of modern computers and supercomputers has enabled these bottom-up approaches to realistically model human mobility and contact behavior. The COVID-19 pandemic showcased the urgent need for detailed and informative models that can answer research questions on transmission dynamics.

View Article and Find Full Text PDF

In the course of antibody affinity maturation, germinal centre (GC) B cells mutate their immunoglobulin heavy- and light-chain genes in a process known as somatic hypermutation (SHM). Panels of mutant B cells with different binding affinities for antigens are then selected in a Darwinian manner, which leads to a progressive increase in affinity among the population. As with any Darwinian process, rare gain-of-fitness mutations must be identified and common loss-of-fitness mutations avoided.

View Article and Find Full Text PDF

Emerging infectious diseases and climate change are two of the major challenges in 21st century. Although over the past decades, highly-resolved mathematical models have contributed in understanding dynamics of infectious diseases and are of great aid when it comes to finding suitable intervention measures, they may need substantial computational effort and produce significant CO emissions. Two popular modeling approaches for mitigating infectious disease dynamics are agent-based and population-based models.

View Article and Find Full Text PDF

Control of cell proliferation is critical for the lymphocyte life cycle. However, little is known about how stage-specific alterations in cell cycle behavior drive proliferation dynamics during T cell development. Here, we employed in vivo dual-nucleoside pulse labeling combined with the determination of DNA replication over time as well as fluorescent ubiquitination-based cell cycle indicator mice to establish a quantitative high-resolution map of cell cycle kinetics of thymocytes.

View Article and Find Full Text PDF

In the realm of infectious disease control, accurate modeling of the transmission dynamics is pivotal. As human mobility and commuting patterns are key components of communicable disease spread, we introduce a novel travel time aware metapopulation model. Our model aims to enhance estimations of disease transmission.

View Article and Find Full Text PDF

Identifying immune modulators that impact neutralizing antibody responses against severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) is of great relevance. We postulated that high serum concentrations of soluble angiotensin-converting enzyme 2 (sACE2) might mask the spike and interfere with antibody maturation toward the SARS-CoV-2-receptor-binding motif (RBM). We tested 717 longitudinal samples from 295 COVID-19 patients and showed a 2- to 10-fold increase of enzymatically active sACE2 (a-sACE2), with up to 1 μg/mL total sACE2 in moderate and severe patients.

View Article and Find Full Text PDF

Introduction: A protective humoral response to pathogens requires the development of high affinity antibodies in germinal centers (GC). The combination of antigens available during immunization has a strong impact on the strength and breadth of the antibody response. Antigens can display various levels of immunogenicity, and a hierarchy of immunodominance arises when the GC response to an antigen dampens the response to other antigens.

View Article and Find Full Text PDF

The selection of high-affinity B cells and the production of high-affinity antibodies are mediated by T follicular helper cells (Tfhs) within germinal centres (GCs). Therein, somatic hypermutation and selection enhance B cell affinity but risk the emergence of self-reactive B cell clones. Despite being outnumbered compared to their helper counterpart, the ablation of T follicular regulatory cells (Tfrs) results in enhanced dissemination of self-reactive antibody-secreting cells (ASCs).

View Article and Find Full Text PDF
Article Synopsis
  • The immune response in older individuals weakens, leading to less effective vaccine responses due to declines in germinal center (GC) function.
  • In aged mice, T follicular helper cells are mislocated, and there is a reduced network of follicular dendritic cells, both important for a robust immune response.
  • Providing T cells that correctly localize with follicular dendritic cells can reverse age-related defects in the GC response, enhancing vaccine effectiveness.
View Article and Find Full Text PDF

A variety of B cell clones seed the germinal centers, where a selection stringency expands the fitter clones to generate higher affinity antibodies. However, recent experiments suggest that germinal centers often retain a diverse set of B cell clones with a range of affinities and concurrently carry out affinity maturation. Amid a tendency to flourish germinal centers with fitter clones, how several B cell clones with differing affinities can be concurrently selected remains poorly understood.

View Article and Find Full Text PDF
Article Synopsis
  • Sequencing B-cell and T-cell receptors helps us learn about the immune response but doesn't give details on their affinity or specificity.
  • A new multiscale model is presented to better understand B-cell repertoires by comparing simulated results with actual experimental data.
  • Findings indicate that clonal abundance doesn't necessarily correlate with affinity, and even low-abundance clones may possess high affinity, guiding future research approaches.
View Article and Find Full Text PDF

Germinal centers (GCs) that form within lymphoid follicles during antibody responses are sites of massive cell death. Tingible body macrophages (TBMs) are tasked with apoptotic cell clearance to prevent secondary necrosis and autoimmune activation by intracellular self antigens. We show by multiple redundant and complementary methods that TBMs derive from a lymph node-resident, CD169-lineage, CSF1R-blockade-resistant precursor that is prepositioned in the follicle.

View Article and Find Full Text PDF

Antibody affinity maturation depends on the formation of germinal centers (GCs) in lymph nodes. This process generates a massive number of apoptotic B cells, which are removed by a specialized subset of phagocytes, known as tingible body macrophages (TBMs). Although defects in these cells are associated with pathological conditions, the identity of their precursors and the dynamics of dying GC B cell disposal remained unknown.

View Article and Find Full Text PDF

Multicellular life requires altruistic cooperation between cells. The adaptive immune system is a notable exception, wherein germinal center B cells compete vigorously for limiting positive selection signals. Studying primary human lymphomas and developing new mouse models, we found that mutations affecting disrupt a critical immune gatekeeper mechanism that strictly limits B cell fitness during antibody affinity maturation.

View Article and Find Full Text PDF

can lead to chronic infections and abscesses in internal organs including kidneys, which are associated with the expansion of myeloid-derived suppressor cells (MDSCs) and their suppressive effect on T cells. Here, we developed a mathematical model of chronic infection that incorporates the T-cell suppression by MDSCs and suggests therapeutic strategies for clearance. A therapeutic protocol with heat-killed (HKSA) was quantified and tested .

View Article and Find Full Text PDF

Antibody diversification and selection of B cells occur in dynamic structures called germinal centers (GCs). Passively administered soluble antibodies regulate the GC response by masking the antigen displayed on follicular dendritic cells (FDCs). This suggests that GCs might intercommunicate via naturally produced soluble antibodies, but the role of such GC-GC interactions is unknown.

View Article and Find Full Text PDF

Germinal centers (GCs) are transient structures where affinity maturation of B cells gives rise to high affinity plasma and memory cells. The mechanism of GC shutdown is unclear, despite being an important phenomenon maintaining immune homeostasis. In this study, we used a mathematical model to identify mechanisms that can independently promote contraction of GCs leading to shutdown.

View Article and Find Full Text PDF

Amino acids and their metabolites are key regulators of immune responses, and plasma levels may change profoundly during acute disease states. Using targeted metabolomics, we evaluated concentration changes in plasma amino acids and related metabolites in community-acquired pneumonia (CAP, = 29; compared against healthy controls, = 33) from presentation to hospital through convalescence. We further aimed to identify biomarkers for acute CAP vs.

View Article and Find Full Text PDF

Background: During the first wave of COVID-19, hospital and intensive care unit beds got overwhelmed in Italy leading to an increased death burden. Based on data from Italian regions, we disentangled the impact of various factors contributing to the bottleneck situation of healthcare facilities, not well addressed in classical SEIR-like models. A particular emphasis was set on the undetected fraction (dark figure), on the dynamically changing hospital capacity, and on different testing, contact tracing, quarantine strategies.

View Article and Find Full Text PDF

Background: Different parts of an organism like the gut, endocrine, nervous and immune systems constantly exchange information. Understanding the pathogenesis of various systemic chronic diseases increasingly relies on understanding how these subsystems orchestrate their activities.

Methods: We started from the working hypothesis that energy is a fundamental quantity that governs activity levels of all subsystems and that interactions between subsystems control the distribution of energy according to acute needs.

View Article and Find Full Text PDF

Affinity maturation is an evolutionary process by which the affinity of antibodies (Abs) against specific antigens (Ags) increases through rounds of B-cell proliferation, somatic hypermutation, and positive selection in germinal centres (GC). The positive selection of B cells depends on affinity, but the underlying mechanisms of affinity discrimination and affinity-based selection are not well understood. It has been suggested that selection in GC depends on both rapid binding of B-cell receptors (BcRs) to Ags which is kinetically favourable and tight binding of BcRs to Ags, which is thermodynamically favourable; however, it has not been shown whether a selection bias for kinetic properties is present in the GC.

View Article and Find Full Text PDF

Background: In clinical practice, a plethora of medical examinations are conducted to assess the state of a patient's pathology producing a variety of clinical data. However, investigation of these data faces two major challenges. Firstly, we lack the knowledge of the mechanisms involved in regulating these data variables, and secondly, data collection is sparse in time since it relies on patient's clinical presentation.

View Article and Find Full Text PDF

We analyze the relaxation of non-pharmaceutical interventions (NPIs) under an increasing number of vaccinations in Germany. For the spread of SARS-CoV-2 we employ a SIR-type model that accounts for age-dependence and includes realistic contact patterns between age groups. The implementation of NPIs occurs on changed contact patterns, improved isolation, or reduced infectiousness when, e.

View Article and Find Full Text PDF

Background: Despite the vaccination process in Germany, a large share of the population is still susceptible to SARS-CoV-2. In addition, we face the spread of novel variants. Until we overcome the pandemic, reasonable mitigation and opening strategies are crucial to balance public health and economic interests.

View Article and Find Full Text PDF

On an organismal level, metabolism needs to react in a well-orchestrated manner to metabolic challenges such as nutrient uptake. Key metabolic hubs in human blood are pyruvate and lactate, both of which are constantly interconverted by very fast exchange fluxes. The quantitative contribution of different food sources to these metabolite pools remains unclear.

View Article and Find Full Text PDF