Publications by authors named "Olga N Makshakova"

Detection of pathogens is a major concern in many fields like medicine, pharmaceuticals, or agri-food. Most conventional detection methods require skilled staff and specific laboratory equipment for sample collection and analysis or are specific to a given pathogen. Thus, they cannot be easily integrated into a portable device.

View Article and Find Full Text PDF

Hydroxyapatite (HA) remains one of the most popular materials for various biomedical applications and its fields of application have been expanding. Lithium (Li) is a promising candidate for modifying the biological behavior of HA. Li is present in trace amounts in the human body as an alkaline and bioelectric material.

View Article and Find Full Text PDF

Proteins can lose native functionality due to non-physiological aggregation. In this work, we have shown the power of sulfated polysaccharides as a natural assistant to restore damaged protein structures. Protein aggregates enriched by cross-β structures are a characteristic of amyloid fibrils related to different health disorders.

View Article and Find Full Text PDF

Aberrant glycosylation plays a crucial role in tumour progression and invasiveness. Tumour-associated carbohydrate antigens (TACAs) represent a valuable set of targets for immunotherapeutic approaches. The poor immunogenicity of glycan structures, however, requires a more effective and well-directed way of targeting TACAs on the surface of cancer cells than antibodies.

View Article and Find Full Text PDF
Article Synopsis
  • Antibody-based cancer therapies, particularly bispecific antibody-drug conjugates, are advancing quickly in the pharmaceutical industry, enhancing immunotherapy's effectiveness.
  • Miniaturized antibody fragments like diabodies, nanobodies, and scFvs show great potential for targeting and penetrating tumor tissues in cancer treatments.
  • This study developed a versatile scFv OKT3 antibody using E. coli, incorporating a unique amino acid for efficient 'click chemistry' conjugation, intending for applications in controlled anti-T cell therapies and cancer imaging.
View Article and Find Full Text PDF

Hydroxyapatite (HA) with a stoichiometry composition of Ca(PO)(OH) is widely applied for various biomedical issues, first of all for bone defect substitution, as a catalyst, and as an adsorbent for soil and water purification. The incorporation of foreign ions changes the acid-base relation, microstructure, porosity, and other properties of the HA materials. Here, we report the results of calculations of the density functional theory and analyze the possibility of two foreign ions, CO and Mg, to be co-localized in the HA structure.

View Article and Find Full Text PDF

Background: Aberrant glycosylation patterns play a crucial role in the development of cancer cells as they promote tumor growth and aggressiveness. Lectins recognize carbohydrate antigens attached to proteins and lipids on cell surfaces and represent potential tools for application in cancer diagnostics and therapy. Among the emerging cancer therapies, immunotherapy has become a promising treatment modality for various hematological and solid malignancies.

View Article and Find Full Text PDF

During the last few decades, polysaccharide hydrogels attract more and more attention as therapeutic protein delivery systems due to their biocompatibility and the simplicity of the biodegradation of natural polymers. The protein retention by and release from the polysaccharide gel network is regulated by geometry and physical interactions of protein with the matrix. In the present work, we studied the molecular details of interactions between κ-carrageenan and three lipases, namely the lipases from , , and -which differ in their size and net charge-upon protein immobilization in microparticles of polysaccharide gel.

View Article and Find Full Text PDF

Biocompatible, nontoxic, and biodegradable polysaccharides are considered as a promising base for bio-inspired materials, applicable as scaffolds in regenerative medicine, coatings in drug delivery systems, etc. The tunable macroscopic properties of gels should meet case-dependent requirements. The admixture of proteins to polysaccharides and their coupling in more sophisticated structures opens an avenue for gel property tuning via physical cross-linking of components and the modification of gel network structure.

View Article and Find Full Text PDF

Protein aggregation and formation of amyloid fibrils are associated with many diseases and present a ubiquitous problem in protein science. Hen egg white lysozyme (HEWL) can form fibrils both from the full length protein and from its fragments. In the present study, we simulated unfolding of the amyloidogenic fragment of HEWL encompassing residues 49-101 to study the conformational aspects of amyloidogenesis.

View Article and Find Full Text PDF

Mesoporous hydroxyapatite (HA) and iron(III)-doped HA (Fe-HA) are attractive materials for biomedical, catalytic, and environmental applications. In the present study, the nanopowders of HA and Fe-HA with a specific surface area up to 194.5 m/g were synthesized by a simple precipitation route using iron oxalate as a source of Fe cations.

View Article and Find Full Text PDF

The recognition of carbohydrate receptors on host cell membranes by pathogenic lectins is a crucial step in the microbial invasion. Two bacterial lectins, the B-subunit of Shiga toxin from (StxB) and lectin I from (LecA), are specific to the same galactolipid-globotriaosylceramide (Gb3). In this study we present a coarse-grained (cg) model of Gb3, which we further apply to unravel the molecular details of glycolipid binding by two lectins on the surface of a DOPC/cholesterol/Gb3 bilayer.

View Article and Find Full Text PDF

Rhamnogalacturonan I (RG-I), a polysaccharide found in different types of plant cell walls, fulfills specific functions, the structural basis of which remains unclear. Generalized 2D correlation FTIR spectroscopy with dehydration was employed to reveal the structure and interactions in flax RG-I solution and microwave treated gel. Varying water content allowed emphasizing a role of solvent in maintaining different structures.

View Article and Find Full Text PDF

Innate immunity is the first line of defense against pathogens and predators. To initiate a response, it relies on the detection of invaders, where lectin-carbohydrate interactions play a major role. O-Methylated glycans were previously identified as non-self epitopes and conserved targets for defense effector proteins belonging to the tectonin superfamily.

View Article and Find Full Text PDF

The article presents the structural principles of microwave-induced formation of new gel type from pectic rhamnogalacturonan I (RG-I). The backbone of gel-forming RG-I does not contain consecutive galacturonic residues and modifying groups that can be the cause of junction zone formation as it occurs in course of classical ways of pectin gelation. Microwave irradiation does not cause destruction and chemical modifications of RG-I.

View Article and Find Full Text PDF

Within the family of plant cell wall polysaccharides rhamnogalacturonans I are the most diverse and structurally complex members. In present study we characterize the 3-dimensional structures and dynamic features of the constituents of RG-I along MD trajectories. It is demonstrated that extended threefold helical structure of the rhamnogalacturonan linear backbone is the most energetically favorable motif.

View Article and Find Full Text PDF

Tissue specific isoforms of human glyceraldehyde-3-phosphate dehydrogenase, somatic (GAPD) and sperm-specific (GAPDS), have been reported to display different levels of both stability and catalytic activity. Here we apply MD simulations to investigate molecular basis of this phenomenon. The protein is a tetramer where each subunit consists of two domains - catalytic and NAD-binding one.

View Article and Find Full Text PDF