Pathogenic fungi cause major postharvest losses. During storage and ripening, fruit becomes highly susceptible to fungi that cause postharvest disease. Fungicides are effective treatments to limit disease.
View Article and Find Full Text PDFThe genus Solanum comprises three food crops (potato, tomato, and eggplant), which are consumed on daily basis worldwide and also producers of notorious anti-nutritional steroidal glycoalkaloids (SGAs). Hydroxylated SGAs (i.e.
View Article and Find Full Text PDFThe serpins are a family of structurally conserved protease inhibitors found in all animal and plant kingdoms. After interaction with their cognate substrate(s), their native energetically stressed state is relaxed by hydrolysis, resulting in a semi-stable covalent bond that disables the protease. The inherent flexible serpin structure supports additional non-inhibitory functions.
View Article and Find Full Text PDFProgrammed cell death (PCD) in plants plays a key role in defense response and is promoted by the release of compartmentalized proteases to the cytoplasm. Yet the exact identity and control of these proteases is poorly understood. Serpins are an important group of proteins that uniquely curb the activity of proteases by irreversible inhibition; however, their role in plants remains obscure.
View Article and Find Full Text PDFIn animals, protease inhibitors of the serpin family are associated with many physiological processes, including blood coagulation and innate immunity. Serpins feature a reactive center loop (RCL), which displays a protease target sequence as a bait. RCL cleavage results in an irreversible, covalent serpin-protease complex.
View Article and Find Full Text PDFMol Plant Microbe Interact
December 2009
Colletotrichum pathogens of fruit and leaves are known ammonium secretors. Here, we show that Colletotrichum coccodes virulence, as measured by tomato (Solanum lycopersicum cv. Motelle) fruit tissue necrosis, correlates with the amount of ammonium secreted.
View Article and Find Full Text PDFAbiotic stresses are a primary cause of crop loss worldwide. The convergence of stress signalling pathways to a common set of transcription factors suggests the existence of upstream regulatory genes that control plant responses to multiple abiotic stresses. To identify such genes, data from published Arabidopsis thaliana abiotic stress microarray analyses were combined with our presented global analysis of early heat stress-responsive gene expression, in a relational database.
View Article and Find Full Text PDFThe gaseous pollutant SO(2) readily reacts with water to form sulfite that impacts deleteriously on animal and plant health. By modulating the level of sulfite oxidase (SO) that catalyzes the transformation of sulfites to the non-toxic sulfate, we show that Arabidopsis and tomato plants can be rendered resistant or susceptible to SO(2)/sulfite. Plants in which sulfite oxidase expression was abrogated by RNA interference (RNAi) accumulated relatively less sulfate after SO(2) application and showed enhanced induction of senescence and wounding-associated transcripts, leaf necrosis and chlorophyll bleaching.
View Article and Find Full Text PDFReactive oxygen species (ROS) play a crucial role in many cellular responses and signaling pathways, including the oxidative burst defense response to pathogens. We have examined very early events in cryptogein-induced ROS production in tobacco (Nicotiana tabacum) Bright Yellow-2 suspension cells. Using Amplex Red and Amplex Ultra Red reagents, which report real-time H2O2 accumulation in cell populations, we show that the internal signal for H2O2 develops more rapidly than the external apoplastic signal.
View Article and Find Full Text PDFSUMMARY Fusarium oxysporum is a soil-borne pathogen that infects plants through the roots and uses the vascular system for host ingress. Specialized for this route of infection, F. oxysporum is able to adapt to the scarce nutrient environment in the xylem vessels.
View Article and Find Full Text PDFThe regulation of gene expression by cellular calcium is crucial for plant defense against biotic and abiotic stresses. However, the number of genes known to respond to specific transient calcium signals is limited, and as yet there is no definition of a calcium-responsive cis element in plants. Here, we generated specific cytosolic calcium transients in intact Arabidopsis thaliana seedlings and linked them to early transcriptome changes, followed by bioinformatic analysis of the responsive genes.
View Article and Find Full Text PDFSUMMARY Nitrogen is an essential growth component whose availability will limit microbial spread, and as such it serves as a key control point in dictating an organism's adaptation to various environments. Little is known about fungal nutrition in planta. To enhance our understanding of this process we examined the transcriptional adaptation of Fusarium oxysporum f.
View Article and Find Full Text PDFThe proteolytic machinery of chloroplasts and mitochondria in Arabidopsis consists primarily of three families of ATP-dependent proteases, Clp, Lon, and FtsH, and one family of ATP-independent proteases, DegP. However, the functional significance of the multiplicity of their genes is not clear. To test whether expression of specific isomers could be differently affected by growth conditions, we analyzed transcript abundance following short-term exposure to different environmental stimuli, using 70-mer oligonucleotide arrays.
View Article and Find Full Text PDFPlant respiratory burst oxidase homologs (Rboh) are homologs of the human neutrophil pathogen-related gp91(phox). Antisense technology was employed to ascertain the biological function of Lycopersicon esculentum (tomato) Rboh. Lines with diminished Rboh activity showed a reduced level of reactive oxygen species (ROS) in the leaf, implying a role for Rboh in establishing the cellular redox milieu.
View Article and Find Full Text PDFAlternative splicing is a major contributor to genome complexity, playing a significant role in various cellular functions, including signal transduction, immunity, and development. The spliceosomal machinery is responsible for the processing of nuclear RNA. Several splicing factors associated with this complex are phosphorylated by kinases that possess a conserved LAMMER motif.
View Article and Find Full Text PDFPlant Cell
October 2002
For centuries, rose has been the most important crop in the floriculture industry; its economic importance also lies in the use of its petals as a source of natural fragrances. Here, we used genomics approaches to identify novel scent-related genes, using rose flowers from tetraploid scented and nonscented cultivars. An annotated petal EST database of approximately 2100 unique genes from both cultivars was created, and DNA chips were prepared and used for expression analyses of selected clones.
View Article and Find Full Text PDF