Antimicrob Resist Infect Control
May 2025
Background: Coronavirus disease 2019 (COVID-19) pandemic constituted the largest global health crisis in recent generations. It may also have disrupted the pattern of antimicrobial use (AMU) and subsequently affected the development of antimicrobial resistance (AMR) - a grave human health concern. This study aimed to give an overview of existing AMR surveillance systems and evaluate the impact of COVID-19 on AMU and AMR in the Nordics using data from these systems.
View Article and Find Full Text PDFPlasmids are key determinants in microbial ecology and evolution, facilitating the dissemination of adaptive traits and antibiotic resistance genes (ARGs). Although the molecular mechanisms governing plasmid replication, maintenance, and transfer have been extensively studied, the specific impacts of urbanization-induced pollution on plasmid ecology, diversity, and associated ARGs in tropical regions remain underexplored. This study investigates these dynamics in a tropical aquatic ecosystem, providing novel insights into how pollution shapes plasmid composition and function.
View Article and Find Full Text PDFWastewater treatment plants (WWTPs) may serve as hotspots for pathogens and promote antimicrobial resistance (AMR). Plastic debris in wastewater could further contribute to AMR dissemination. The aim of this study was to investigate the impact of various microplastic types on bacterial communities and AMR gene abundance in wastewater that were obtained from two WWTPs, one in Tromsø, Norway, and the other one in Potchefstroom, South Africa.
View Article and Find Full Text PDFThe Nordic countries (Denmark, Finland, Iceland, Norway, and Sweden) have effectively kept lower antibiotic-resistant bacterial (ARB) pathogen rates than many other countries. However, in recent years, these five countries have encountered a rise in ARB cases and challenges in treating infections due to the growing prevalence of ARB pathogens. Wastewater-based surveillance (WBS) is a valuable supplement to clinical methods for ARB surveillance, but there is a lack of comprehensive understanding of WBS application for ARB in the Nordic countries.
View Article and Find Full Text PDFProfiling technologies, such as proteomics, allow the simultaneous measurement and comparison of thousands of plant components without prior knowledge of their identity. The combination of these non-targeted methods facilitates a more comprehensive approach than targeted methods and thus provides additional opportunities to identify genotypic changes resulting from genetic modification, including new allergens or toxins. The purpose of this study was to investigate unintended changes in GM Bt maize grown in South Africa.
View Article and Find Full Text PDFNew and emerging gene-editing techniques make it possible to target specific genes in species with greater speed and specificity than previously possible. Of major relevance for plant breeding, regulators and scientists are discussing how to regulate products developed using these gene-editing techniques. Such discussions include whether to adopt or adapt the current framework for GMO risk governance in evaluating the impacts of gene-edited plants, and derived products, on the environment, human and animal health and society.
View Article and Find Full Text PDFSome genetically modified (GM) plants have transgenes that confer tolerance to abiotic stressors. Meanwhile, other transgenes may interact with abiotic stressors, causing pleiotropic effects that will affect the plant physiology. Thus, physiological alteration might have an impact on the product safety.
View Article and Find Full Text PDFBackground: Prior to their release in the environment, transgenic crops are examined for their health and environmental safety. In addition, transgene expression needs to be consistent in order to express the introduced trait (e.g.
View Article and Find Full Text PDFBackground: In genetically modified (GM) crops there is a risk that the inserted genes may introduce new allergens and/or adjuvants into the food and feed chain. The MON810 maize, expressing the insecticidal Cry1Ab toxin, is grown in many countries worldwide. In animal models, intranasal and intraperitoneal immunisations with the purified Cry1Ab proteins have induced immune responses, and feeding trials with Cry1Ab-containing feed have revealed some altered immune responses.
View Article and Find Full Text PDFBt protein content in transgenic insect resistant (Bt) maize may vary between tissues within plants and between plants growing under different environmental conditions. However, it is unknown whether and how Bt protein content correlates with transgene expression, and whether this relationship is influenced by stressful environmental conditions. Two Bt maize varieties containing the same transgene cassette (MON 810) were grown under optimal and stressful conditions.
View Article and Find Full Text PDFBackground: Profiling technologies allow the simultaneous measurement and comparison of thousands of cell components without prior knowledge of their identity. In the present study, we used two-dimensional gel electrophoresis combined with mass spectrometry to evaluate protein expression of Brazilian genetically modified maize hybrid grown under different agroecosystems conditions. To this effect, leaf samples were subjected to comparative analysis using the near-isogenic non-GM hybrid as the comparator.
View Article and Find Full Text PDFNaturally transformable bacteria acquire chromosomal DNA from related species at lower frequencies than from cognate DNA sources. To determine how genome location affects heterogamic transformation in bacteria, we inserted an nptI marker into random chromosome locations in 19 different strains of the Acinetobacter genus (>24% divergent at the mutS/trpE loci). DNA from a total of 95 nptI-tagged isolates was used to transform the recipient Acinetobacter baylyi strain ADP1.
View Article and Find Full Text PDFThe number of nuclear group I introns from myxomycetes is rapidly increasing in GenBank as more rDNA sequences from these organisms are being sequenced. They represent an interesting and complex group of intervening sequences because several introns are mobile (or inferred to be mobile) and many contain large and unusual insertions in peripheral loops. Here we describe related group I introns at position 1389 in the small subunit rDNA of representatives from the myxomycete family Didymiaceae.
View Article and Find Full Text PDFMyxomycetes (plasmodial slime molds) belonging to the order Physarales contain obligatory group I introns at positions 1949 and 2449 in their large subunit ribosomal RNA gene. Here, we report 36 group I introns from the Didymiaceae family (order Physarales) from 18 isolates representing three genera and seven species, and have reconstructed both host and intron phylogenies. The introns, named L1949 and L2449, were found in all isolates analyzed, consistent with an obligatory distribution in Didymiaceae.
View Article and Find Full Text PDFBackground: Ribosomal DNA of several species of the free-living Naegleria amoeba harbors an optional group I intron within the nuclear small subunit ribosomal RNA gene. The intron (Nae.S516) has a complex organization of two ribozyme domains (NaGIR1 and NaGIR2) and a homing endonuclease gene (NaHEG).
View Article and Find Full Text PDFThe myxomycete Didymium iridis (isolate Panama 2) contains a mobile group I intron named Dir.S956-1 after position 956 in the nuclear small subunit (SSU) rRNA gene. The intron is efficiently spread through homing by the intron-encoded homing endonuclease I-DirI.
View Article and Find Full Text PDF