Publications by authors named "Steinar D Johansen"

We sequenced and analyzed the complete mitogenome of a Norwegian isolate of the octocoral using the Ion Torrent sequencing technology. The 18,790 bp circular mitochondrial genome was found to harbor the same set of 17 genes, which encode 14 protein subunits, two structural ribosomal RNAs and one tRNA, as reported in other octocorals. In addition, we detected a new tRNA-like gene sequence nested within the MutS protein coding region.

View Article and Find Full Text PDF

Epithelial-mesenchymal transition (EMT) is a cellular plasticity program critical for embryonic development and tissue regeneration, and aberrant EMT is associated with disease including cancer. The high degree of plasticity in the mammary epithelium is reflected in extensive heterogeneity among breast cancers. Here, we have analyzed RNA-sequencing data from three different mammary epithelial cell line-derived EMT models and identified a robust mammary EMT gene expression signature that separates breast cancers into distinct subgroups.

View Article and Find Full Text PDF

RNAs originating from mitochondrial genomes are abundant in transcriptomic datasets produced by high-throughput sequencing technologies, primarily in short-read outputs. Specific features of mitochondrial small RNAs (mt-sRNAs), such as non-templated additions, presence of length variants, sequence variants, and other modifications, necessitate the need for the development of an appropriate tool for their effective identification and annotation. We have developed mtR_find, a tool to detect and annotate mitochondrial RNAs, including mt-sRNAs and mitochondria-derived long non-coding RNAs (mt-lncRNA).

View Article and Find Full Text PDF

Background: Mobile group I introns encode homing endonucleases that confer intron mobility initiated by a double-strand break in the intron-lacking allele at the site of insertion. Nuclear ribosomal DNA of some fungi and protists contain mobile group I introns harboring His-Cys homing endonuclease genes (HEGs). An intriguing question is how protein-coding genes embedded in nuclear ribosomal DNA become expressed.

View Article and Find Full Text PDF

Background: Spliceosomal introns are parts of primary transcripts that are removed by RNA splicing. Although introns apparently do not contribute to the function of the mature transcript, in vertebrates they comprise the majority of the transcribed region increasing the metabolic cost of transcription. The persistence of long introns across evolutionary time suggests functional roles that can offset this metabolic cost.

View Article and Find Full Text PDF

Group I introns are mobile genetic elements encoding self-splicing ribozymes. Group I introns in nuclear genes are restricted to ribosomal DNA of eukaryotic microorganisms. For example, the myxomycetes, which represent a distinct protist phylum with a unique life strategy, are rich in nucleolar group I introns.

View Article and Find Full Text PDF

Many severe inflammation conditions are complement-dependent with the complement component C5a-C5aR1 axis as an important driver. At the RNA level, the blood transcriptome undergoes programmed expression of coding and long non-coding RNAs to combat invading microorganisms. Understanding the expression of long non-coding RNAs containing elements in inflammation is important for reconstructing cell fate trajectories leading to severe disease.

View Article and Find Full Text PDF

Nuclear group I introns are restricted to the ribosomal DNA locus where they interrupt genes for small subunit and large subunit ribosomal RNAs at conserved sites in some eukaryotic microorganisms. Here, the myxomycete protists are a frequent source of nuclear group I introns due to their unique life strategy and a billion years of separate evolution. The ribosomal DNA of the myxomycete was investigated and found to contain seven group I introns, including a direct repeat-containing intron at insertion site S1389 in the small subunit ribosomal RNA gene.

View Article and Find Full Text PDF

A hallmark of sea anemone mitochondrial genomes (mitogenomes) is the presence of complex catalytic group I introns. Here, we report the complete mitogenome and corresponding transcriptome of the carpet sea anemone (family Stichodactylidae). The mitogenome is vertebrate-like in size, organization, and gene content.

View Article and Find Full Text PDF

Background: Liver sinusoidal endothelial cells (LSECs) and Kupffer cells (KCs; liver resident macrophages) form the body's most effective scavenger cell system for the removal of harmful blood-borne substances, ranging from modified self-proteins to pathogens and xenobiotics. Controversies in the literature regarding the LSEC phenotype pose a challenge when determining distinct functionalities of KCs and LSECs. This may be due to overlapping functions of the two cells, insufficient purification and/or identification of the cells, rapid dedifferentiation of LSECs in vitro, or species differences.

View Article and Find Full Text PDF

During zebrafish development, an early type of rRNA is gradually replaced by a late type that is substantially different in sequence. We applied RiboMeth-seq to rRNA from developmental stages for profiling of 2'--Me, to learn if changes in methylation pattern were a component of the shift. We compiled a catalog of 2'--Me sites and cognate box C/D guide RNAs comprising 98 high-confidence sites, including 10 sites that were not known from other vertebrates, one of which was specific to late-type rRNA.

View Article and Find Full Text PDF

Sequencing datasets available in public repositories are already high in number, and their growth is exponential. Raw sequencing data files constitute a substantial portion of these data, and they need to be pre-processed for any downstream analyses. The removal of adapter sequences is the first essential step.

View Article and Find Full Text PDF
Article Synopsis
  • * A new deyolking procedure was developed that significantly reduces yolk content, leading to a much higher number of detectable proteins in early zebrafish embryos.
  • * The improved analysis revealed many functional proteins related to key biological processes, enhancing our understanding of molecular embryogenesis in various poly-embryonic animals.
View Article and Find Full Text PDF

Objective: Analyze key features of the anglerfish Lophius piscatorius mitochondrial transcriptome based on high-throughput total RNA sequencing.

Results: We determined the complete mitochondrial DNA and corresponding transcriptome sequences of L. piscatorius.

View Article and Find Full Text PDF

Genome studies in fish provide evidence for the adaptability of the vertebrate immune system, revealing alternative immune strategies. The reported absence of the major compatibility complex (MHC) class II pathway components in certain species of pipefish (genus ) and cod-like fishes (order Gadiformes) is of particular interest. The MHC II pathway is responsible for immunization and defence against extracellular threats through the presentation of exogenous peptides to T helper cells.

View Article and Find Full Text PDF

Background: The mitochondrial genomes of mushroom corals (Corallimorpharia) are remarkable for harboring two complex group I introns; ND5-717 and COI-884. How these autocatalytic RNA elements interfere with mitochondrial RNA processing is currently not known. Here, we report experimental support for unconventional processing events of ND5-717 containing RNA.

View Article and Find Full Text PDF

Ocean acidification threatens to disrupt interactions between organisms throughout marine ecosystems. The diversity of reef-building organisms decreases as seawater CO2 increases along natural gradients, yet soft-bodied animals, such as sea anemones, are often resilient. We sequenced the polyA-enriched transcriptome of adult sea anemone Anemonia viridis and its dinoflagellate symbiont sampled along a natural CO2 gradient in Italy to assess stress levels in these organisms.

View Article and Find Full Text PDF

Mitochondrial genome organization of sea anemones appears conserved among species and families, and is represented by a single circular DNA molecule of 17 to 21 kb. The mitochondrial gene content corresponds to the same 13 protein components of the oxidative phosphorylation (OxPhos) system as in vertebrates. Hallmarks, however, include a highly reduced tRNA gene repertoire and the presence of autocatalytic group I introns.

View Article and Find Full Text PDF

A heteroplasmic tandem repeat (HTR) array occupies 100 to 300 bp of the mitochondrial DNA control region in the Atlantic cod, and recently we noted that the repeat appeared integrated in a polyadenylated mitochondrial long noncoding RNA. Here we provide a more detailed analysis of the mitochondrial HTR in the mitochondrial genome of 134 Atlantic cod specimens. We report all specimens to harbor mitochondrial HTRs in the control region, and identified 26 distinct variants among the 402 repeat motifs assessed.

View Article and Find Full Text PDF

Objective: The objective of this study was to analyse intraspecific sequence variation of Atlantic cod mitochondrial DNA, based on a comprehensive collection of completely sequenced mitochondrial genomes.

Results: We determined the complete mitochondrial DNA sequence of 124 cod specimens from the eastern and western part of the species' distribution range in the North Atlantic Ocean. All specimens harboured a unique mitochondrial DNA haplotype.

View Article and Find Full Text PDF

Low-level mitochondrial heteroplasmy is a common phenomenon in both normal and cancer cells. Here, we investigate the link between low-level heteroplasmy and mitogenome mutations in a human breast cancer matched cell line by high-throughput sequencing. We identified 23 heteroplasmic sites, of which 15 were common between normal cells (Hs578Bst) and cancer cells (Hs578T).

View Article and Find Full Text PDF

Cnidarians harbor a variety of small regulatory RNAs that include microRNAs (miRNAs) and PIWI-interacting RNAs (piRNAs), but detailed information is limited. Here, we report the identification and expression of novel miRNAs and putative piRNAs, as well as their genomic loci, in the symbiotic sea anemone Anemonia viridis. We generated a draft assembly of the A.

View Article and Find Full Text PDF

The mitochondrial genomes of sea anemones are dynamic in structure. Invasion by genetic elements, such as self-catalytic group I introns or insertion-like sequences, contribute to sea anemone mitochondrial genome expansion and complexity. By using next generation sequencing we investigated the complete mtDNAs and corresponding transcriptomes of the temperate sea anemone Anemonia viridis and its closer tropical relative Anemonia majano.

View Article and Find Full Text PDF

Complex group I introns represent hallmarks of hexacoral mitochondrial genomes (mtDNAs). These intron elements are expected to influence the gene organization and gene expression. We sequenced the mitochondrial genome and transcriptome of Zoanthus sansibariscus and Palythoa heliodiscus, two zoantharian species (colonial anemones) representing different families within the suborder Brachycnemina.

View Article and Find Full Text PDF

Group I introns in nuclear ribosomal RNA of eukaryotic microorganisms are processed by splicing or circularization. The latter results in formation of full-length circular introns without ligation of the exons and has been proposed to be active in intron mobility. We applied qRT-PCR to estimate the copy number of circular intron RNA from the myxomycete .

View Article and Find Full Text PDF