Atherosclerosis progression is a result of chronic and non-resolving inflammation, effective treatments for which still remain to be developed. We designed and developed branched poly(ß-amino ester) nanoparticles (NPs) containing plasmid DNA encoding IL-10, a potent anti-inflammatory cytokine to atherosclerosis. The NPs (NP-VHPK) are functionalized with a targeting peptide (VHPK) specific for VCAM-1, which is overexpressed by endothelial cells at sites of atherosclerotic plaque.
View Article and Find Full Text PDFSince its discovery, evidence that siRNA was able to act as an RNA interference effector, led to its acceptation as a novel medicine. The siRNA approach is very effective, due to its catalytic mechanism, but still the limitations of its cellular delivery should be addressed. One promising form of non-viral gene delivery system is liposomes.
View Article and Find Full Text PDFPoly(β-amino esters) or PBAEs are highly efficient synthetic polymers optimized for gene delivery, a complicated process dependent on polymer properties such as hydrophobicity, charge, and degradability. The modular design of PBAEs has allowed for the identification of which polymer and nanoparticle properties significantly affect gene delivery efficiency in various cell types. However, these investigations need to be extended to more difficult-to-transfect cells such as primary endothelial cells, which hold enormous potential for atherosclerosis.
View Article and Find Full Text PDFNanoparticles are uniquely suited for the study and development of potential therapies against atherosclerosis by virtue of their size, fine-tunable properties, and ability to incorporate therapies and/or imaging modalities. Furthermore, nanoparticles can be specifically targeted to the atherosclerotic plaque, evading off-target effects and/or associated cytotoxicity. There has been a wealth of knowledge available concerning the use of nanotechnologies in cardiovascular disease and atherosclerosis, in particular in animal models, but with a major focus on imaging agents.
View Article and Find Full Text PDFStem Cell Res Ther
May 2017
Background: Satellite cells are quiescent resident muscle stem cells that present an important potential to regenerate damaged tissue. However, this potential is diminished once they are removed from their niche environment in vivo, prohibiting the long-term study and genetic investigation of these cells. This study therefore aimed to provide a novel biomaterial platform for the in-vitro culture of human satellite cells that maintains their stem-like quiescent state, an important step for cell therapeutic studies.
View Article and Find Full Text PDF