Publications by authors named "Nicholas Cohrs"

We investigate the flow past two transcatheter aortic valves (TAVs) and one severely calcified valve in an anatomically realistic aorta geometry to evaluate the ability of the TAVs to establish a healthier aortic flow compared to a diseased case. Velocity measurements of pulsatile flow are carried out using the 3D-particle tracking velocimetry technique. We present a novel approach based on the Smagorinsky model to assess the important subvoxel-scale (here smaller than 750 [Formula: see text]m) shear stress contribution that is usually unavailable in experiments.

View Article and Find Full Text PDF

We present a long-term performance study on a pneumatically actuated soft pump (SP). The pump was manufactured by adapting rubber compression technology. Important parameters influencing pump performance (e.

View Article and Find Full Text PDF

Future left ventricular assist devices (LVADs) are expected to respond to the physiologic need of patients; however, they still lack reliable pressure or volume sensors for feedback control. In the clinic, echocardiography systems are routinely used to measure left ventricular (LV) volume. Until now, echocardiography in this form was never integrated in LVADs due to its computational complexity.

View Article and Find Full Text PDF

Silicone is an important material family used for various medical implants. It is biocompatible, but its bioinertness prevents cell attachment, and thus tissue biointegration of silicone implants. This often results in constrictive fibrosis and implant failure.

View Article and Find Full Text PDF

The technology of 3D-printing has allowed the production of entirely soft pumps with complex chamber geometries. We used this technique to develop a completely soft pneumatically driven total artificial heart from silicone elastomers and evaluated its performance on a hybrid mock circulation. The goal of this study is to present an innovative concept of a soft total artificial heart (sTAH).

View Article and Find Full Text PDF

We investigate the impact of sugars and polyols on the heat-induced aggregation of a model monoclonal antibody whose monomer depletion is rate-limited by protein unfolding. We follow the kinetics of monomer consumption by size exclusion chromatography, and we interpret the results in the frame of two mechanistic schemes describing the enhanced protein stability in the presence of polyols. It is found that the stabilization effect increases with increasing polyol concentration with a comparable trend for all of the tested polyols.

View Article and Find Full Text PDF