Publications by authors named "Nicholas A Mason"

The study and importance of altitudinal migration has attracted increasing interest among zoologists. Altitudinal migrants are taxonomically widespread and move across altitudinal gradients as partial or complete migrants, subjecting them to a wide array of environments and ecological interactions. Here, we present a brief synthesis of recent developments in the field and suggest future directions toward a more taxonomically inclusive comparative framework for the study of altitudinal migration.

View Article and Find Full Text PDF
Article Synopsis
  • - Natural history museums hold important specimens, samples, and data that help us understand the natural world.
  • - A recent commentary discusses the need for more compassionate collection methods for specimens in these museums.
  • - It raises the question of whether it's feasible to entirely stop the collection of whole animal specimens in the future.
View Article and Find Full Text PDF

AbstractAnimal coloration serves many biological functions and must therefore balance potentially competing selective pressures. For example, many animals have camouflage in which coloration matches the visual background that predators scan for prey. However, different colors reflect different amounts of solar radiation and may therefore have thermoregulatory implications as well.

View Article and Find Full Text PDF

The relationship between ecology and morphology is a cornerstone of evolutionary biology, and quantifying variation across environments can shed light on processes that give rise to biodiversity. Three morphotypes of the Steller's Jay () occupy different ecoregions in western North America, which vary in climate and landcover. These morphotypes (Coastal, Interior, Rocky Mountain) differ in size, plumage coloration, and head pattern.

View Article and Find Full Text PDF

Genetic structure and phenotypic variation among populations are affected by both geographic distance and environmental variation across species' distributions. Understanding the relative contributions of isolation by distance (IBD) and isolation by environment (IBE) is important for elucidating population dynamics across habitats and ecological gradients. In this study, we compared phenotypic and genetic variation among Horned Lark (Eremophila alpestris) populations from 10 sites encompassing an elevational gradient from low-elevation desert scrub in Death Valley (285 a.

View Article and Find Full Text PDF

The genetic architecture of a phenotype can have considerable effects on the evolution of a trait or species. Characterizing genetic architecture provides insight into the complexity of a given phenotype and, potentially, the role of the phenotype in evolutionary processes like speciation. We use genome sequences to investigate the genetic basis of phenotypic variation in redpoll finches (Acanthis spp.

View Article and Find Full Text PDF

The New World sparrows (Passerellidae) are a large, diverse group of songbirds that vary in morphology, behavior, and ecology. Thus, they are excellent for studying trait evolution in a phylogenetic framework. We examined lability versus conservatism in morphological and behavioral traits in two related clades of sparrows (), and assessed whether habitat has played an important role in trait evolution.

View Article and Find Full Text PDF

The Horned Lark () is a small songbird that exhibits remarkable geographic variation in appearance and habitat across an expansive distribution. While has been the focus of many ecological and evolutionary studies, we still lack a highly contiguous genome assembly for the Horned Lark and related taxa (Alaudidae). Here, we present CLO_EAlp_1.

View Article and Find Full Text PDF

Phenotypic and genetic variation are present in all species, but lineages differ in how variation is partitioned among populations. Examining phenotypic clustering and genetic structure within a phylogeographic framework can clarify which biological processes have contributed to extant biodiversity in a given lineage. Here, we investigate genetic and phenotypic variation among populations and subspecies within a Neotropical songbird complex, the White-collared Seedeater () of Central America and Mexico.

View Article and Find Full Text PDF

Competition between closely related species has long been viewed as a powerful selective force that drives trait diversification, thereby generating phenotypic diversity over macroevolutionary timescales. However, although the impact of interspecific competition has been documented in a handful of iconic insular radiations, most previous studies have focused on traits involved in resource use, and few have examined the role of competition across large, continental radiations. Thus, the extent to which broad-scale patterns of phenotypic diversity are shaped by competition remain largely unclear, particularly for social traits.

View Article and Find Full Text PDF

Phenotypic divergence can promote reproductive isolation and speciation, suggesting a possible link between rates of phenotypic evolution and the tempo of speciation at multiple evolutionary scales. To date, most macroevolutionary studies of diversification have focused on morphological traits, whereas behavioral traits─including vocal signals─are rarely considered. Thus, although behavioral traits often mediate mate choice and gene flow, we have a limited understanding of how behavioral evolution contributes to diversification.

View Article and Find Full Text PDF

The ornaments used by animals to mediate social interactions are diverse, and by reconstructing their evolutionary pathways we can gain new insights into the mechanisms underlying ornamental innovation and variability. Here, we examine variation in plumage carotenoids among the true finches (Aves: Fringillidae) using biochemical and comparative phylogenetic analyses to reconstruct the evolutionary history of carotenoid states and evaluate competing models of carotenoid evolution. Our comparative analyses reveal that the most likely ancestor of finches used dietary carotenoids as yellow plumage colorants, and that the ability to metabolically modify dietary carotenoids into more complex pigments arose secondarily once finches began to use modified carotenoids to create red plumage.

View Article and Find Full Text PDF

Almost 30 y ago, the field of intraspecific phylogeography laid the foundation for spatially explicit and genealogically informed studies of population divergence. With new methods and markers, the focus in phylogeography shifted to previously unrecognized geographic genetic variation, thus reducing the attention paid to phenotypic variation in those same diverging lineages. Although phenotypic differences among lineages once provided the main data for studies of evolutionary change, the mechanisms shaping phenotypic differentiation and their integration with intraspecific genetic structure have been underexplored in phylogeographic studies.

View Article and Find Full Text PDF

The tanagers (Thraupidae) are a major component of the Neotropical avifauna, and vary in plumage colors, behaviors, morphologies, and ecologies. Globally, they represent nearly 4% of all avian species and are the largest family of songbirds. However, many currently used tanager genera are not monophyletic, based on analyses of molecular data that have accumulated over the past 25 years.

View Article and Find Full Text PDF

Species distributions are limited by a complex array of abiotic and biotic factors. In general, abiotic (climatic) factors are thought to explain species' broad geographic distributions, while biotic factors regulate species' abundance patterns at local scales. We used species distribution models to test the hypothesis that a biotic interaction with a tree, the Colombian oak (Quercus humboldtii), limits the broad-scale distribution of the Acorn Woodpecker (Melanerpes formicivorus) in the Northern Andes of South America.

View Article and Find Full Text PDF

Understanding the patterns and processes that contribute to phenotypic diversity and speciation is a central goal of evolutionary biology. Recently, high-throughput sequencing has provided unprecedented phylogenetic resolution in many lineages that have experienced rapid diversification. The Holarctic redpoll finches (Genus: Acanthis) provide an intriguing example of a recent, phenotypically diverse lineage; traditional sequencing and genotyping methods have failed to detect any genetic differences between currently recognized species, despite marked variation in plumage and morphology within the genus.

View Article and Find Full Text PDF

The concept of a macroevolutionary trade-off among sexual signals has a storied history in evolutionary biology. Theory predicts that if multiple sexual signals are costly for males to produce or maintain and females prefer a single, sexually selected trait, then an inverse correlation between sexual signal elaborations is expected among species. However, empirical evidence for what has been termed the 'transfer hypothesis' is mixed, which may reflect different selective pressures among lineages, evolutionary covariates or methodological differences among studies.

View Article and Find Full Text PDF

Thraupidae is the second largest family of birds and represents about 4% of all avian species and 12% of the Neotropical avifauna. Species in this family display a wide range of plumage colors and patterns, foraging behaviors, vocalizations, ecotypes, and habitat preferences. The lack of a complete phylogeny for tanagers has hindered the study of this evolutionary diversity.

View Article and Find Full Text PDF