Publications by authors named "Neal Paragas"

Urine-derived stem cells (USCs) are adult human stem cells that can be collected noninvasively from urine and cultured in vitro. Because of their renal origin and reported therapeutic effects, we hypothesized that USCs would home to the injured kidney in acute kidney injury (AKI) models. We used mouse models of glycerol-induced rhabdomyolysis or unilateral nephrectomy with clamping ischemia reperfusion injury to model AKI.

View Article and Find Full Text PDF

The human immunological mechanisms defining the clinical outcome of SARS-CoV-2 infection remain elusive. This knowledge gap is mostly driven by the lack of appropriate experimental platforms recapitulating human immune responses in a controlled human lung environment. Here, we report a mouse model (i.

View Article and Find Full Text PDF
Article Synopsis
  • Animal models simulating COVID-19, particularly K18-hACE2 mice, are essential for studying the virus's effects and spread.
  • Researchers tested two doses of the virus in these mice, observing that while they generally showed mild pneumonia, many deteriorated rapidly due to temperature drops and virus spread to the brain.
  • The study found that the virus initially entered the nervous system through the olfactory bulb and that its spread in the brain may not rely on typical routes of infection observed in other tissues, raising questions about how these findings relate to human cases of COVID-19.
View Article and Find Full Text PDF

The current strategy to detect acute injury of kidney tubular cells relies on changes in serum levels of creatinine. Yet serum creatinine (sCr) is a marker of both functional and pathological processes and does not adequately assay tubular injury. In addition, sCr may require days to reach diagnostic thresholds, yet tubular cells respond with programs of damage and repair within minutes or hours.

View Article and Find Full Text PDF
Article Synopsis
  • - Giardiasis is a neglected disease linked to poverty, characterized by parasitic diarrhea, and current treatments are becoming less effective due to resistance.
  • - Identifying unique essential kinases in the parasite's reduced kinome could reveal new drug targets, making it possible to repurpose existing kinase inhibitors for treatment.
  • - Advances in pharmacokinetic modeling and new imaging techniques, along with CRISPR-interference methods, could speed up the development of better giardiasis therapies focused on inhibiting kinases.
View Article and Find Full Text PDF

Animal models recapitulating distinctive features of severe COVID-19 are critical to enhance our understanding of SARS-CoV-2 pathogenesis. Transgenic mice expressing human angiotensin-converting enzyme 2 (hACE2) under the cytokeratin 18 promoter (K18-hACE2) represent a lethal model of SARS-CoV-2 infection. The precise mechanisms of lethality in this mouse model remain unclear.

View Article and Find Full Text PDF

The kidney's inherent complexity has made identifying cell-specific pathways challenging, particularly when temporally associating them with the dynamic pathophysiology of acute kidney injury (AKI). Here, we combine renal cell-specific luciferase reporter mice using a chemoselective luciferin to guide the acquisition of cell-specific transcriptional changes in C57BL/6 background mice. Hydrogen peroxide generation, a common mechanism of tissue damage, was tracked using a peroxy-caged-luciferin to identify optimum time points for immunoprecipitation of labeled ribosomes for RNA-sequencing.

View Article and Find Full Text PDF

We developed a computer-aided analysis tool for quantitatively determining bioluminescent reporter distributions inside small animals. The core innovations are a body-fitting animal shuttle and a statistical mouse atlas, both of which are spatially aligned and scaled according to the animal's weight, and hence provide data congruency across animals of varying size and pose. In conjunction with a multispectral bioluminescence tomography technique capitalizing on the spatial framework of the shuttle, the in vivo biodistribution of luminescent reporters can rapidly be calculated and, thus, enables operator-independent and computer-driven data analysis.

View Article and Find Full Text PDF
Article Synopsis
  • Organoids from human pluripotent stem cells are valuable for high-throughput screening (HTS), but their complex nature makes automation difficult.
  • A new automated HTS platform streamlines the entire 21-day process of kidney organoid differentiation and analysis, utilizing liquid-handling robots or manual methods.
  • Advanced imaging and single-cell RNA sequencing uncover new cell types in organoids and help assess drug effects, revealing insights like the role of myosin in polycystic kidney disease.
View Article and Find Full Text PDF

Although most nephron segments contain one type of epithelial cell, the collecting ducts consists of at least two: intercalated (IC) and principal (PC) cells, which regulate acid-base and salt-water homeostasis, respectively. In adult kidneys, these cells are organized in rosettes suggesting functional interactions. Genetic studies in mouse revealed that transcription factor coordinates IC and PC development.

View Article and Find Full Text PDF

Two metrics, a rise in serum creatinine concentration and a decrease in urine output, are considered tantamount to the injury of the kidney tubule and the epithelial cells thereof (AKI). Yet neither criterion emphasizes the etiology or the pathogenetic heterogeneity of acute decreases in kidney excretory function. In fact, whether decreased excretory function due to contraction of the extracellular fluid volume (vAKI) or due to intrinsic kidney injury (iAKI) actually share pathogenesis and should be aggregated in the same diagnostic group remains an open question.

View Article and Find Full Text PDF

α-Intercalated cells (A-ICs) within the collecting duct of the kidney are critical for acid-base homeostasis. Here, we have shown that A-ICs also serve as both sentinels and effectors in the defense against urinary infections. In a murine urinary tract infection model, A-ICs bound uropathogenic E.

View Article and Find Full Text PDF

Background: Congenital abnormalities of the kidney and the urinary tract are the most common cause of pediatric kidney failure. These disorders are highly heterogeneous, and the etiologic factors are poorly understood.

Methods: We performed genomewide linkage analysis and whole-exome sequencing in a family with an autosomal dominant form of congenital abnormalities of the kidney or urinary tract (seven affected family members).

View Article and Find Full Text PDF

Kidney damage induces the expression of a myriad of proteins in the serum and in the urine. The function of these proteins in the sequence of damage and repair is now being studied in genetic models and by novel imaging techniques. One of the most intensely expressed proteins is lipocalin2, also called NGAL or Siderocalin.

View Article and Find Full Text PDF

Background: Urinary neutrophil gelatinase-associated lipocalin (uNGAL) is expressed by kidney tubules that are acutely damaged, but few studies have investigated the association of neutrophil gelatinase-associated lipocalin (NGAL) with different forms of chronic kidney disease (CKD). HIV-associated nephropathy (HIVAN) is a progressive form of CKD characterized by collapsing focal segmental glomerulosclerosis and microcytic tubular dilatation that typically leads to end-stage renal disease (ESRD).

Methods: Previously, we reported that microcystic tubular dilatations specifically expressed NGAL RNA, implying that the detection of uNGAL protein could mark advanced HIVAN.

View Article and Find Full Text PDF

Many proteins have been proposed to act as surrogate markers of organ damage, yet for many candidates the essential biomarker characteristics that link the protein to the injured organ have not yet been described. We generated an Ngal reporter mouse by inserting a double-fusion reporter gene encoding luciferase-2 and mCherry (Luc2-mC) into the Ngal (Lcn2) locus. The Ngal-Luc2-mC reporter accurately recapitulated the endogenous message and illuminated injuries in vivo in real time.

View Article and Find Full Text PDF

Inhibiting renal glucose transport is a potential pharmacologic approach to treat diabetes. The renal tubular sodium-glucose transporter 2 (SGLT2) reabsorbs approximately 90% of the filtered glucose load. An animal model with sglt2 dysfunction could provide information regarding the potential long-term safety and efficacy of SGLT2 inhibitors, which are currently under clinical investigation.

View Article and Find Full Text PDF

The lipocalins are secreted proteins that bind small organic molecules. Scn-Ngal (also known as neutrophil gelatinase associated lipocalin, siderocalin, lipocalin 2) sequesters bacterial iron chelators, called siderophores, and consequently blocks bacterial growth. However, Scn-Ngal is also prominently expressed in aseptic diseases, implying that it binds additional ligands and serves additional functions.

View Article and Find Full Text PDF

Nephrosis and a rapid decline in kidney function characterize HIV-associated nephropathy (HIVAN). Histologically, HIVAN is a collapsing focal segmental glomerulosclerosis with prominent tubular damage. We explored the expression of neutrophil gelatinase-associated lipocalin (NGAL), a marker of tubular injury, to determine whether this protein has the potential to aid in the noninvasive diagnosis of HIVAN.

View Article and Find Full Text PDF

Developing organs require iron for a myriad of functions, but embryos deleted of the major adult transport proteins, transferrin or its receptor transferrin receptor1 (TfR1(-/-)), still initiate organogenesis, suggesting that non-transferrin pathways are important. To examine these pathways, we developed chimeras composed of fluorescence-tagged TfR1(-/-) cells and untagged wild-type cells. In the kidney, TfR1(-/-) cells populated capsule and stroma, mesenchyme and nephron, but were underrepresented in ureteric bud tips.

View Article and Find Full Text PDF

In the embryonic kidney, progenitors in the metanephric mesenchyme differentiate into specialized renal epithelia in a defined sequence characterized by the formation of cellular aggregates, conversion into polarized epithelia and segmentation along a proximal-distal axis. This sequence is reiterated throughout renal development to generate nephrons. Here, we identify global transcriptional programs associated with epithelial differentiation utilizing an organ culture model of rat metanephric mesenchymal differentiation, which recapitulates the hallmarks of epithelialization in vivo in a synchronized rather than reiterative fashion.

View Article and Find Full Text PDF

Early inductive events in mammalian nephrogenesis depend on an interaction between the ureteric bud and the metanephric mesenchyme. However, mounting evidence points towards an involvement of additional cell types--such as stromal cells and angioblasts--in growth and patterning of the nephron. In this study, through analysis of the stem cell factor (SCF)/c-kit ligand receptor pair, we describe an additional distinct cell population in the early developing kidney.

View Article and Find Full Text PDF

Purpose Of Review: Neutrophil gelatinase-associated lipocalin (NGAL) is a member of the lipocalin superfamily of carrier proteins. NGAL is the first known mammalian protein which specifically binds organic molecules called siderophores, which are high-affinity iron chelators. Here, we review the expression, siderophore-dependent biological activities and clinical significance of NGAL in epithelial development and in kidney disease.

View Article and Find Full Text PDF

Mammalian nephrogenesis depends on the interaction between the ureteric bud and the metanephric mesenchyme. As the ureteric bud undergoes branching and segmentation, the stalks differentiate into the collecting system of the mature kidney, while the tip cells interact with the adjacent cells of the metanephric mesenchyme, inducing their conversion into nephrons. This induction is mediated by secreted factors.

View Article and Find Full Text PDF

Almost 1% of human infants are born with urogenital abnormalities, many of which are linked to irregular connections between the distal ureters and the bladder. During development, ureters migrate by an unknown mechanism from their initial integration site in the Wolffian ducts up to the base of the bladder in a process that we call ureter maturation. Rara(-/-) Rarb2(-/-) mice display impaired vitamin A signaling and develop syndromic urogenital malformations similar to those that occur in humans, including renal hypoplasia, hydronephrosis and mega-ureter, abnormalities also seen in mice with mutations in the proto-oncogene Ret.

View Article and Find Full Text PDF