Publications by authors named "Nathalie Rodde"

To what extent overdominance might contribute to the maintenance of genetic diversity within genomes is still an ongoing research question. Pseudo-overdominance created by the complementation of deleterious alleles in heterozygotes has recently become a subject of particular interest. Simulations and theory suggest that pseudo-overdominance may occur in low recombining regions.

View Article and Find Full Text PDF

Plant adaptation to terrestrial life started 450 million years ago and has played a major role in the evolution of life on Earth. The genetic mechanisms allowing this adaptation to a diversity of terrestrial constraints have been mostly studied by focusing on flowering plants. Here, we gathered a collection of 133 accessions of the model bryophyte Marchantia polymorpha and studied its intraspecific diversity using selection signature analyses, a genome-environment association study and a pangenome.

View Article and Find Full Text PDF

Quinoa (Chenopodium quinoa) is an important crop for the future challenges of food and nutrient security. Deep characterization of quinoa diversity is needed to support the agronomic improvement and adaptation of quinoa as its worldwide cultivation expands. In this study, we report the construction of chromosome-scale genome assemblies of eight quinoa accessions covering the range of phenotypic and genetic diversity of both lowland and highland quinoas.

View Article and Find Full Text PDF
Article Synopsis
  • The first nuclear genome assembly and complete mitochondrial genome (mitogenome) for Hylesia metabus, a species of moth, has been presented, with the nuclear genome being one of the largest for lepidopterans at 1,271 Mb.
  • The nuclear genome is organized into 31 pseudo chromosomes with a high quality BUSCO score of 99.5%, and contains a significant amount of repetitive elements, primarily located in intergenic regions.
  • The assembled genomes are available on the BIPAA website and will aid future studies in population and comparative genomics.
View Article and Find Full Text PDF

Diploid A-genome wheat (einkorn wheat) presents a nutrition-rich option as an ancient grain crop and a resource for the improvement of bread wheat against abiotic and biotic stresses. Realizing the importance of this wheat species, reference-level assemblies of two einkorn wheat accessions were generated (wild and domesticated). This work reports an einkorn genome database that provides an interface to the cereals research community to perform comparative genomics, applied genetics and breeding research.

View Article and Find Full Text PDF

When insect herbivores attack plants, elicitors from oral secretions and regurgitants (OS) enter wounds during feeding, eliciting defense responses. These generally require plant jasmonate (JA) signaling, specifically, a jasmonoyl-L-isoleucine (JA-Ile) burst, for their activation and are well studied in the native tobacco . We used intraspecific diversity captured in a 26-parent MAGIC population planted in nature and an updated genome assembly to impute natural variation in the OS-elicited JA-Ile burst linked to a mutation in the JA-Ile biosynthetic gene .

View Article and Find Full Text PDF

Einkorn (Triticum monococcum) was the first domesticated wheat species, and was central to the birth of agriculture and the Neolithic Revolution in the Fertile Crescent around 10,000 years ago. Here we generate and analyse 5.2-Gb genome assemblies for wild and domesticated einkorn, including completely assembled centromeres.

View Article and Find Full Text PDF
Article Synopsis
  • Crop wild relatives are important for improving crops by providing genetic traits that help with climate change and disease resilience.
  • Research on sunflowers revealed that while introgressing wild genes can introduce beneficial genetic diversity, it often negatively affects yield and quality due to linkage drag.
  • The study suggests that breeding should prioritize closely related wild relatives to minimize adverse effects while enhancing desirable traits in cultivated sunflowers.
View Article and Find Full Text PDF

MADS-box transcription factors are important regulators of floral organ identity through their binding to specific motifs, termed CArG, in the promoter of their target genes. Petal initiation and development depend on class A and B genes, but MADS-box genes of the APETALA3 (AP3) clade are key regulators of this process. In the early diverging eudicot Nigella damascena, an apetalous [T] morph is characterized by the lack of expression of the NdAP3-3 gene, with its expression being petal-specific in the wild-type [P] morph.

View Article and Find Full Text PDF

During our initial phylogenetic study of the monocot genus Erythronium (Liliaceae), we observed peculiar eudicot-type internal transcribed spacer (ITS) sequences in a dataset derived from genomic DNA of Erythronium dens-canis. This raised the possibility of horizontal transfer of a eudicot alien ribosomal DNA (rDNA) into the Erythronium genome. In this work we aimed to support this hypothesis by carrying out genomic, molecular, and cytogenetic analyses.

View Article and Find Full Text PDF

Background: Cassava (Manihot esculenta) is an important clonally propagated food crop in tropical and subtropical regions worldwide. Genetic gain by molecular breeding has been limited, partially because cassava is a highly heterozygous crop with a repetitive and difficult-to-assemble genome.

Findings: Here we demonstrate that Pacific Biosciences high-fidelity (HiFi) sequencing reads, in combination with the assembler hifiasm, produced genome assemblies at near complete haplotype resolution with higher continuity and accuracy compared to conventional long sequencing reads.

View Article and Find Full Text PDF

The cloning of agronomically important genes from large, complex crop genomes remains challenging. Here we generate a 14.7 gigabase chromosome-scale assembly of the South African bread wheat (Triticum aestivum) cultivar Kariega by combining high-fidelity long reads, optical mapping and chromosome conformation capture.

View Article and Find Full Text PDF
Article Synopsis
  • The apricot tree (Prunus armeniaca) serves as a useful model for studying how plants evolve and adapt, with the analysis of nearly 600 apricot genomes leading to significant findings.
  • There are two main genetic groups of apricots, Chinese and European, each having high genetic diversity due to separate domestication from distinct Central Asian wild populations and some gene mixing afterward.
  • Although both groups show similar physical traits, they have different regions of their genomes influenced by natural selection, particularly in areas related to life cycles, fruit quality, and disease resistance, with European apricots exhibiting more selection signals overall.
View Article and Find Full Text PDF

Background: Ribosomal DNA (rDNA) repeats are situated in the nucleolus organizer regions (NOR) of chromosomes and transcribed into rRNA for ribosome biogenesis. Thus, they are an essential component of eukaryotic genomes. rDNA repeat units consist of rRNA gene clusters that are transcribed into single pre-rRNA molecules, each separated by intergenic spacers (IGS) that contain regulatory elements for rRNA gene cluster transcription.

View Article and Find Full Text PDF

Passiflora edulis is the most widely cultivated species of passionflowers, cropped mainly for industrialized juice production and fresh fruit consumption. Despite its commercial importance, little is known about the genome structure of P. edulis.

View Article and Find Full Text PDF

Understanding the development of multicellular organisms requires the identification of regulators, notably transcription factors, and specific transcript populations associated with tissue differentiation. Laser capture microdissection (LCM) is one of the techniques that enable the analysis of distinct tissues or cells within an organ. Coupling this technique with RNA sequencing (RNAseq) makes it extremely powerful to obtain a genome-wide and dynamic view of gene expression.

View Article and Find Full Text PDF

The composition and structure of fleece variation observed in mammals is a consequence of a strong selective pressure for fiber production after domestication. In sheep, fleece variation discriminates ancestral species carrying a long and hairy fleece from modern domestic sheep (Ovis aries) owning a short and woolly fleece. Here, we report that the "woolly" allele results from the insertion of an antisense EIF2S2 retrogene (called asEIF2S2) into the 3' UTR of the IRF2BP2 gene leading to an abnormal IRF2BP2 transcript.

View Article and Find Full Text PDF

The family Passifloraceae consists of some 700 species classified in around 16 genera. Almost all its members belong to the genus . In Brazil, the yellow passion fruit () is of considerable economic importance, both for juice production and consumption as fresh fruit.

View Article and Find Full Text PDF

Nod factors (NFs) are lipochitooligosaccharidic signal molecules produced by rhizobia, which play a key role in the rhizobium-legume symbiotic interaction. In this study, we analyzed the gene expression reprogramming induced by purified NF (4 and 24 h of treatment) in the root epidermis of the model legume Medicago truncatula Tissue-specific transcriptome analysis was achieved by laser-capture microdissection coupled to high-depth RNA sequencing. The expression of 17,191 genes was detected in the epidermis, among which 1,070 were found to be regulated by NF addition, including previously characterized NF-induced marker genes.

View Article and Find Full Text PDF

Rhizobium-induced root nodules are specialized organs for symbiotic nitrogen fixation. Indeterminate-type nodules are formed from an apical meristem and exhibit a spatial zonation which corresponds to successive developmental stages. To get a dynamic and integrated view of plant and bacterial gene expression associated with nodule development, we used a sensitive and comprehensive approach based upon oriented high-depth RNA sequencing coupled to laser microdissection of nodule regions.

View Article and Find Full Text PDF

Somatic cell nuclear transfer (SCNT) is the most efficient cell reprogramming technique available, especially when working with bovine species. Although SCNT blastocysts performed equally well or better than controls in the weeks following embryo transfer at Day 7, elongation and gastrulation defects were observed prior to implantation. To understand the developmental implications of embryonic/extra-embryonic interactions, the morphological and molecular features of elongating and gastrulating tissues were analysed.

View Article and Find Full Text PDF

In the introduction, we briefly recall old but classic evidence that there is no tolerance to paternal alloantigens in a first pregnancy. Therefore, we performed small- and large-scale microarrays in CBA × DBA/2 and CBA × BALB/c combinations, recently described as a murine model for preeclampsia. Our results are in line with other data suggesting a very early deregulation of local immune vascular events rather than a break of immune tolerance.

View Article and Find Full Text PDF