Efficient cellular fusion of mononuclear precursors is the prerequisite for the generation of fully functional multinucleated bone-resorbing osteoclasts. However, the exact molecular factors and mechanisms controlling osteoclast fusion remain incompletely understood. Here we identify RANKL-mediated activation of caspase-8 as early key event during osteoclast fusion.
View Article and Find Full Text PDFChronic Kidney Disease (CKD) is associated with markedly increased cardiovascular (CV) morbidity and mortality. Chronic inflammation, a hallmark of both CKD and CV diseases (CVD), is believed to drive this association. Pro-inflammatory endogenous TLR agonists, Damage-Associated Molecular Patterns (DAMPs), have been found elevated in CKD patients' plasma and suggested to promote CVD, however, confirmation of their involvement, the underlying mechanism(s), the extent to which individual DAMPs contribute to vascular pathology in CKD and the evaluation of potential therapeutic strategies, have remained largely undescribed.
View Article and Find Full Text PDFSince the embedding of the principles of the 3Rs (Replacement, Reduction and Refinement) in national and international regulations on the use of animals, scientists have been challenged to find ways to reduce the number of animals in their research. Here, we present a digital platform, called '3R Backboard', linked to a laboratory animal management system, which facilitates sharing of surplus biological materials from animals (e.g.
View Article and Find Full Text PDFAlternatively activated macrophages (AAMs) contribute to the resolution of inflammation and tissue repair. However, molecular pathways that govern their differentiation have remained incompletely understood. Here, we show that uncoupling protein-2-mediated mitochondrial reprogramming and the transcription factor GATA3 specifically controlled the differentiation of pro-resolving AAMs in response to the alarmin IL-33.
View Article and Find Full Text PDFThe future of regenerative medicine relies on our understanding of the mechanistic processes that underlie tissue regeneration, highlighting the need for suitable animal models. For many years, zebrafish has been exploited as an adequate model in the field due to their very high regenerative capabilities. In this organism, regeneration of several tissues, including the caudal fin, is dependent on a robust epimorphic regenerative process, typified by the formation of a blastema, consisting of highly proliferative cells that can regenerate and completely grow the lost limb within a few days.
View Article and Find Full Text PDFSeveral infectious pathologies in humans, such as tuberculosis or SARS-CoV-2, are responsible for tissue or lung damage, requiring regeneration. The regenerative capacity of adult mammals is limited to few organs. Critical injuries of non-regenerative organs trigger a repair process that leads to a definitive architectural and functional disruption, while superficial wounds result in scar formation.
View Article and Find Full Text PDFThe alarm cytokine interleukin-1β (IL-1β) is a potent activator of the inflammatory cascade following pathogen recognition. IL-1β production typically requires two signals: first, priming by recognition of pathogen-associated molecular patterns leads to the production of immature pro-IL-1β; subsequently, inflammasome activation by a secondary signal allows cleavage and maturation of IL-1β from its pro-form. However, despite the important role of IL-1β in controlling local and systemic inflammation, its overall regulation is still not fully understood.
View Article and Find Full Text PDFBone turnover, which is determined by osteoclast-mediated bone resorption and osteoblast-mediated bone formation, represents a highly energy consuming process. The metabolic requirements of osteoblast differentiation and mineralization, both essential for regular bone formation, however, remain incompletely understood. Here we identify the nuclear receptor peroxisome proliferator-activated receptor (PPAR) δ as key regulator of osteoblast metabolism.
View Article and Find Full Text PDFTissue-resident macrophages exhibit specialized phenotypes dependent on their physiological niche. Investigation of their function often relies upon complex whole mouse transgenic studies. While some appropriate lineage-associated promoters exist, there are no options for tissue-specific targeting of macrophages.
View Article and Find Full Text PDFInflammatory responses require mobilization of innate immune cells from the bone marrow. The functionality of this process depends on the state of the bone marrow microenvironment. We therefore hypothesized that molecular changes in osteoblasts, which are essential stromal cells of the bone marrow microenvironment, influence the inflammatory response.
View Article and Find Full Text PDFNR4A1 (Nur77 or NGFI-B), an orphan member of the nuclear receptor superfamily, has been identified as a key regulator of the differentiation and function of myeloid, lymphoid, and mesenchymal cells. The detailed role of NR4A1 in bone biology is incompletely understood. Here, we report a role for NR4A1 as novel factor controlling the migration and recruitment of osteoclast precursors during bone remodeling.
View Article and Find Full Text PDFEosinophils were reported to serve as an essential component of the plasma cell niche within the bone marrow. As the potential contribution of eosinophils to humoral immunity has remained incompletely understood, we aimed to further characterize their role during antibody responses and to additionally investigate their role in autoimmune disease. Contrary to our expectations and the currently prevailing paradigm, we found that eosinophils are fully dispensable for the survival of murine bone marrow plasma cells and accordingly do not contribute to antibody production and autoantibody-mediated disease.
View Article and Find Full Text PDFMesenchymal stem cells (MSC) are highly immunosuppressive cells able to reduce chronic inflammation through the active release of mediators. Recently, we showed that glucocorticoid-induced leucine zipper (Gilz) expression by MSC is involved in their therapeutic effect by promoting the generation of regulatory T cells. However, the mechanisms underlying this pivotal role of Gilz remain elusive.
View Article and Find Full Text PDFMicroglia cells fulfill key homeostatic functions and essentially contribute to host defense within the CNS. Altered activation of microglia, in turn, has been implicated in neuroinflammatory and neurodegenerative diseases. In this study, we identify the nuclear receptor (NR) Nr4a1 as key rheostat controlling the activation threshold and polarization of microglia.
View Article and Find Full Text PDFPeroxisome proliferator-activated receptors (PPARs) have emerged as key regulators of physiological and immunological processes. Recently, one of their members PPARβ/δ has been identified as major player in the maintenance of bone homeostasis, by promoting Wnt signalling activity in osteoblast and mesenchymal stem cells (MSC). PPARβ/δ not only controls the fate of MSC but also regulates their immunosuppressive properties by directly modulating their NF-κB activity.
View Article and Find Full Text PDFThe checkpoints and mechanisms that contribute to autoantibody-driven disease are as yet incompletely understood. Here we identified the axis of interleukin 23 (IL-23) and the T17 subset of helper T cells as a decisive factor that controlled the intrinsic inflammatory activity of autoantibodies and triggered the clinical onset of autoimmune arthritis. By instructing B cells in an IL-22- and IL-21-dependent manner, T17 cells regulated the expression of β-galactoside α2,6-sialyltransferase 1 in newly differentiating antibody-producing cells and determined the glycosylation profile and activity of immunoglobulin G (IgG) produced by the plasma cells that subsequently emerged.
View Article and Find Full Text PDFThe effect of metabolic stress on the bone marrow microenvironment is poorly defined. We show that high-fat diet (HFD) decreased long-term Lin(-)Sca-1(+)c-Kit(+) (LSK) stem cells and shifted lymphoid to myeloid cell differentiation. Bone marrow niche function was impaired after HFD as shown by poor reconstitution of hematopoietic stem cells.
View Article and Find Full Text PDFDCs are able to undergo rapid maturation, which subsequently allows them to initiate and orchestrate T cell-driven immune responses. DC maturation must be tightly controlled in order to avoid random T cell activation and development of autoimmunity. Here, we determined that 12/15-lipoxygenase-meditated (12/15-LO-mediated) enzymatic lipid oxidation regulates DC activation and fine-tunes consecutive T cell responses.
View Article and Find Full Text PDFUptake of apoptotic cells (ACs) by macrophages ensures the nonimmunogenic clearance of dying cells, as well as the maintenance of self-tolerance to AC-derived autoantigens. Upon ingestion, ACs exert an inhibitory influence on the inflammatory signaling within the phagocyte. However, the molecular signals that mediate these immune-modulatory properties of ACs are incompletely understood.
View Article and Find Full Text PDFPeroxisome proliferator-activated receptors (PPARs) act as metabolic sensors and central regulators of fat and glucose homeostasis. Furthermore, PPARγ has been implicated as major catabolic regulator of bone mass in mice and humans. However, a potential involvement of other PPAR subtypes in the regulation of bone homeostasis has remained elusive.
View Article and Find Full Text PDFRapid clearance of apoptotic cells, frequently referred to as efferocytosis, is crucial for the maintenance of tissue homeostasis and the prevention of autoimmunity. The common model of apoptotic cell clearance involves a system of released "Find me" and exposed "Eat me" signals on apoptotic cells, detected and recognized by matching receptors on macrophages or dendritic cells (DC), referred to as the phagocytic synapse. Osteoclasts share the monocyte lineage with these professional mononuclear phagocytes, thus raising the question if, in addition to bone resorption, osteoclasts can act as scavengers for apoptotic cells.
View Article and Find Full Text PDFNoninflammatory clearance of apoptotic cells (ACs) is crucial to maintain self-tolerance. Here, we have reported a role for the enzyme 12/15-lipoxygenase (12/15-LO) as a central factor governing the sorting of ACs into differentially activated monocyte subpopulations. During inflammation, uptake of ACs was confined to a population of 12/15-LO-expressing, alternatively activated resident macrophages (resMΦ), which blocked uptake of ACs into freshly recruited inflammatory Ly6C(hi) monocytes in a 12/15-LO-dependent manner.
View Article and Find Full Text PDF