Despite the extensive literature on missing data theory and cautionary articles emphasizing the importance of realistic analysis for healthcare data, a critical gap persists in incorporating domain knowledge into the missing data methods. In this paper, we argue that the remedy is to identify the key scenarios that lead to data missingness and investigate their theoretical implications. Based on this proposal, we first introduce an analysis framework where we investigate how different observation agents, such as physicians, influence the data availability and then scrutinize each scenario with respect to the steps in the missing data analysis.
View Article and Find Full Text PDFBackground: Long-term survival after premature birth is significantly determined by development of morbidities, primarily affecting the cardio-respiratory or central nervous system. Existing studies are limited to pairwise morbidity associations, thereby lacking a holistic understanding of morbidity co-occurrence and respective risk profiles.
Methods: Our study, for the first time, aimed at delineating and characterizing morbidity profiles at near-term age and investigated the most prevalent morbidities in preterm infants: bronchopulmonary dysplasia (BPD), pulmonary hypertension (PH), mild cardiac defects, perinatal brain pathology and retinopathy of prematurity (ROP).
JCO Clin Cancer Inform
September 2023
Purpose: Overall survival (OS) is the primary end point in phase III oncology trials. Given low success rates, surrogate end points, such as progression-free survival or objective response rate, are used in early go/no-go decision making. Here, we investigate whether early trends of OS prognostic biomarkers, such as the ROPRO and DeepROPRO, can also be used for this purpose.
View Article and Find Full Text PDFThe pattern graph framework solves a wide range of missing data problems with nonignorable mechanisms. However, it faces two challenges of assessability and interpretability, particularly important in safety-critical problems such as clinical diagnosis: (i) How can one assess the validity of the framework's a priori assumption and make necessary adjustments to accommodate known information about the problem? (ii) How can one interpret the process of exponential tilting used for sensitivity analysis in the pattern graph framework and choose the tilt perturbations based on meaningful real-world quantities? In this paper, we introduce Informed Sensitivity Analysis, an extension of the pattern graph framework that enables us to incorporate substantive knowledge about the missingness mechanism into the pattern graph framework. Our extension allows us to examine the validity of assumptions underlying pattern graphs and interpret sensitivity analysis results in terms of realistic problem characteristics.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Basis Dis
February 2023
SARS-CoV-2 remains an acute threat to human health, endangering hospital capacities worldwide. Previous studies have aimed at informing pathophysiologic understanding and identification of disease indicators for risk assessment, monitoring, and therapeutic guidance. While findings start to emerge in the general population, observations in high-risk patients with complex pre-existing conditions are limited.
View Article and Find Full Text PDFVery preterm infants are at high risk for suboptimal nutrition in the first weeks of life leading to insufficient weight gain and complications arising from metabolic imbalances such as insufficient bone mineral accretion. We investigated the use of a novel set of standardized parenteral nutrition (PN; MUC PREPARE) solutions regarding improving nutritional intake, accelerating termination of parenteral feeding, and positively affecting growth in comparison to individually prescribed and compounded PN solutions. We studied the effect of MUC PREPARE on macro- and micronutrient intake, metabolism, and growth in 58 very preterm infants and compared results to a historic reference group of 58 very preterm infants matched for clinical characteristics.
View Article and Find Full Text PDFAnn Thorac Surg
December 2022
Background: Hospital readmission within 30 days of discharge is a well-studied outcome. Predicting readmission after cardiac surgery, however, is notoriously challenging; the best-performing models in the literature have areas under the curve around .65.
View Article and Find Full Text PDFFront Artif Intell
April 2021
Prognostic scores are important tools in oncology to facilitate clinical decision-making based on patient characteristics. To date, classic survival analysis using Cox proportional hazards regression has been employed in the development of these prognostic scores. With the advance of analytical models, this study aimed to determine if more complex machine-learning algorithms could outperform classical survival analysis methods.
View Article and Find Full Text PDFInt J Comput Assist Radiol Surg
November 2019
Purpose: Automatically segmenting and classifying surgical activities is an important prerequisite to providing automated, targeted assessment and feedback during surgical training. Prior work has focused almost exclusively on recognizing gestures, or short, atomic units of activity such as pushing needle through tissue, whereas we also focus on recognizing higher-level maneuvers, such as suture throw. Maneuvers exhibit more complexity and variability than the gestures from which they are composed, however working at this granularity has the benefit of being consistent with existing training curricula.
View Article and Find Full Text PDFImportance: Daytime sleepiness in surgical trainees can impair intraoperative technical skill and thus affect their learning and pose a risk to patient safety.
Objective: To determine the association between daytime sleepiness of surgeons in residency and fellowship training and their intraoperative technical skill during septoplasty.
Design, Setting, And Participants: This prospective cohort study included 19 surgical trainees in otolaryngology-head and neck surgery programs at 2 academic institutions (Johns Hopkins University School of Medicine and MedStar Georgetown University Hospital).
IEEE Trans Biomed Eng
September 2017
Objective: State-of-the-art techniques for surgical data analysis report promising results for automated skill assessment and action recognition. The contributions of many of these techniques, however, are limited to study-specific data and validation metrics, making assessment of progress across the field extremely challenging.
Methods: In this paper, we address two major problems for surgical data analysis: First, lack of uniform-shared datasets and benchmarks, and second, lack of consistent validation processes.
Background: Surgical tasks are performed in a sequence of steps, and technical skill evaluation includes assessing task flow efficiency. Our objective was to describe differences in task flow for expert and novice surgeons for a basic surgical task.
Methods: We used a hierarchical semantic vocabulary to decompose and annotate maneuvers and gestures for 135 instances of a surgeon's knot performed by 18 surgeons.
J Surg Educ
January 2017
Objective: Task-level metrics of time and motion efficiency are valid measures of surgical technical skill. Metrics may be computed for segments (maneuvers and gestures) within a task after hierarchical task decomposition. Our objective was to compare task-level and segment (maneuver and gesture)-level metrics for surgical technical skill assessment.
View Article and Find Full Text PDFInt J Comput Assist Radiol Surg
June 2015
Purpose: Previous work on surgical skill assessment using intraoperative tool motion has focused on highly structured surgical tasks such as cholecystectomy and used generic motion metrics such as time and number of movements. Other statistical methods such as hidden Markov models (HMM) and descriptive curve coding (DCC) have been successfully used to assess skill in structured activities on bench-top tasks. Methods to assess skill and provide effective feedback to trainees for unstructured surgical tasks in the operating room, such as tissue dissection in septoplasty, have yet to be developed.
View Article and Find Full Text PDFMed Image Comput Comput Assist Interv
February 2014
The growing availability of data from robotic and laparoscopic surgery has created new opportunities to investigate the modeling and assessment of surgical technical performance and skill. However, previously published methods for modeling and assessment have not proven to scale well to large and diverse data sets. In this paper, we describe a new approach for simultaneous detection of gestures and skill that can be generalized to different surgical tasks.
View Article and Find Full Text PDFMed Image Comput Comput Assist Interv
January 2013
We observe that expert surgeons performing MIS learn to minimize their tool path length and avoid collisions with vital structures. We thus conjecture that an expert surgeon's tool paths can be predicted by minimizing an appropriate energy function. We hypothesize that this reference path will be closer to an expert with greater skill, as measured by an objective measurement instrument such as objective structured assessment of technical skill (OSATS).
View Article and Find Full Text PDFInt Forum Allergy Rhinol
November 2012
Background: Assessment of surgical skill plays a crucial role in determining competency, monitoring educational programs, and providing trainee feedback. With the changing health care environment, it will likely play an important role in credentialing and maintenance of certification. The ideal skill assessment tool should be unbiased, objective, and accurate.
View Article and Find Full Text PDFMed Image Comput Comput Assist Interv
November 2010
In the context of minimally invasive surgery, clinical risks are highly associated with surgeons' skill in manipulating surgical tools and their knowledge of the closed anatomy. A quantitative surgical skill assessment can reduce faulty procedures and prevent some surgical risks. In this paper focusing on sinus surgery, we present two methods to identify both skill level and task type by recording motion data of surgical tools as well as the surgeon's eye gaze location on the screen.
View Article and Find Full Text PDF