Rev Sci Instrum
September 2025
The diamond anvil cell is a powerful tool for investigating material behavior under extreme pressure and temperature, but achieving efficient and uniform heating remains challenging. This study introduces a ring-type furnace integrated into a gasket with a metal-insulator-metal sandwich structure, using tantalum (Ta) for heating, tungsten (W) for electrodes, and mica-ceramic powder for insulation, enabling stable and uniform heating up to 2000 K. A calibration method combining thermocouple data and finite element simulations ensures accurate temperature measurement.
View Article and Find Full Text PDFIn high-pressure experimental methods, sample heating in the pressure chamber of a diamond anvil cell is an important topic, and numerous efforts have been made to improve and develop new technologies. In this paper, we propose a new type of internal resistance heating technique, the composite heating gasket, prepared by integrating an annular heater into the sample chamber for direct heating of the sample. As the effective heating area covers the entire pressure chamber wall, a relatively quasi-uniform temperature field is formed within the sample chamber.
View Article and Find Full Text PDFRev Sci Instrum
August 2023
The measurements of temperature directly influence the reasonability of experiments at high pressure and high temperature. In this article, we proposed a new integration design, the built-in thermocouple, for in situ temperature measurements in high-pressure-high-temperature experiments by fusing the characteristics of thermocouples and diamond anvil cells together. By integrating an S-type thermocouple inside the gasket of a diamond anvil cell, we successfully measured the temperature of the sample straight inside the pressure chamber at high pressure and high temperature.
View Article and Find Full Text PDF