Publications by authors named "Muhammad Saad Rehmani"

During leaf morphogenesis, various factors interplay to mediate abaxial-adaxial and proximal-distal polarity, along with other factors contributing to organ boundary and leaf expansion. Although significant progress has been made in understanding the genetics of leaf development, there are still gaps in our understanding of leaf morphogenesis. Here, we show that the bHLH60 transcription factor can affect leaf development.

View Article and Find Full Text PDF

Initiation of flowering is a key switch for plants to shift from the vegetative growth to the phase of reproductive growth. This critical phase is essential not only for achieving successful reproduction, but also for facilitating environmental adaptation and maximizing yield potential. In the past decades, the environmental factors and genetic pathways that control flowering time have undergone extensive investigation in both model plant Arabidopsis and various crop species.

View Article and Find Full Text PDF

Melatonin (MT) is an extensively studied biomolecule with dual functions, serving as an antioxidant and a signaling molecule. Trichoderma Harzianum (TH) is widely recognized for its effectiveness as a biocontrol agent against many plant pathogens. However, the interplay between seed priming and MT (150 μm) in response to NaCl (100 mM) and its interaction with TH have rarely been investigated.

View Article and Find Full Text PDF

Transcriptional regulation plays a key role in the control of seed dormancy, and many transcription factors (TFs) have been documented. However, the mechanisms underlying the interactions between different TFs within a transcriptional complex regulating seed dormancy remain largely unknown. Here, we showed that TF PHYTOCHROME-INTERACTING FACTOR4 (PIF4) physically interacted with the abscisic acid (ABA) signaling responsive TF ABSCISIC ACID INSENSITIVE4 (ABI4) to act as a transcriptional complex to promote ABA biosynthesis and signaling, finally deepening primary seed dormancy.

View Article and Find Full Text PDF

Abscisic acid (ABA) and gibberellins (GA) antagonistically mediate several biological processes, including seed germination, but the molecular mechanisms underlying ABA/GA antagonism need further investigation, particularly any role mediated by a transcription factors module. Here, we report that the DELLA protein RGL2, a repressor of GA signaling, specifically interacts with ABI4, an ABA signaling enhancer, to act as a transcription factor complex to mediate ABA/GA antagonism. The rgl2, abi3, abi4 and abi5 mutants rescue the non-germination phenotype of the ga1-t.

View Article and Find Full Text PDF

Seed longevity is a central actor in plant germplasm resource conservation, species reproduction, geographical distribution, crop yield and quality and food processing and safety. Seed longevity and vigor decrease gradually during storage, which directly influences seed germination and post-germination seedling establishment. It is noted that seedling establishment is a key shift from heterotropism to autotropism and is fueled by the energy reserved in the seeds per se.

View Article and Find Full Text PDF

Leaf senescence is one of the most visible forms of programmed cell death in plants. It can be a seasonal adaptation in trees or the final stage in crops ensuring efficient translocation of nutrients to seeds. Along with developmental cues, various environmental factors could also trigger the onset of senescence through transcriptional cascades.

View Article and Find Full Text PDF

Seed dormancy is an important agronomic trait in cereals and leguminous crops as low levels of seed dormancy during harvest season, coupled with high humidity, can cause preharvest sprouting. Seed longevity is another critical trait for commercial crop propagation and production, directly influencing seed germination and early seedling establishment. Both traits are precisely regulated by the integration of genetic and environmental cues.

View Article and Find Full Text PDF

Coordinated phytohormone signal transduction, in which repressors are the key players, is essential to balance plant development and stress response. In the absence of phytohormones, repressors interplay to terminate the transcription of phytohormone-responsive genes. For phytohormone signal transduction, degradation or inactivation of the repressors is a prerequisite, a process in which proteasomal degradation or protein modifications, such as phosphorylation, are involved.

View Article and Find Full Text PDF

Drought is a major environmental threat that affects plant growth and productivity. Strategies to mitigate the detrimental impacts of drought stress on plants are under scrutiny. Nanotechnology is considered an effective tool in resolving a wide range of environmental issues by offering novel and pragmatic solutions.

View Article and Find Full Text PDF

The growing pollen tube has become one of the most fascinating model cell systems for investigations into cell polarity and polar cell growth in plants. Rapidly growing pollen tubes achieve tip-focused cell expansion by vigorous anterograde exocytosis, through which various newly synthesized macromolecules are directionally transported and deposited at the cell apex. Meanwhile, active retrograde endocytosis counter balances the exocytosis at the tip which is believed to recycle the excessive exocytic components for multiple rounds of secretion.

View Article and Find Full Text PDF