Nitrogen (N) fertilizer-induced soil acidification in Chinese croplands is well-known, but insight in the impacts of different N fertilizer management approaches (fertilizer type and rate) on soil acidification rates is very limited. Here, we conducted a field experiment on a moderate acid soil to quantify soil acidification rates in response to N fertilization by different fertilizer types and N rates through monitoring the fate of elements (mainly nutrients) related to H production and consumption. Two N fertilizer types (urea and NHCl) and three N rates (control, optimized and conventional, 0/120/240 kg N ha for wheat, 0/160/320 kg N ha for maize) were included.
View Article and Find Full Text PDFEnviron Pollut
January 2020
Distinct cropland acidification has been reported in China due to nitrogen (N) fertilizer overuse. However, the impacts on food production and thereby on food security are largely unknown. Yield losses in the period 1980-2050 were therefore assessed by simulating soil pH changes combined with derived pH-yield relationships for wheat, maize and rice.
View Article and Find Full Text PDFSci Total Environ
March 2018
Significant soil pH decrease has been reported in Chinese croplands in response to enhanced chemical fertilizer application and crop yields. However, the temporal and spatial variation of soil acidification rates across Chinese croplands is still unclear. We therefore assessed trends in soil acidification rates across provincial China for the period 1980-2010 by calculating inputs-outputs of major cations and anions in cropland systems.
View Article and Find Full Text PDFWe applied the adapted model VSD+ to assess cropland acidification in four typical Chinese cropping systems (single Maize (M), Wheat-Maize (W-M), Wheat-Rice (W-R) and Rice-Rice (R-R)) on dominant soils in view of its potential threat to grain production. By considering the current situation and possible improvements in field (nutrient) management, five scenarios were designed: i) Business as usual (BAU); ii) No nitrogen (N) fertilizer increase after 2020 (N2020); iii) 100% crop residues return to cropland (100%RR); iv) manure N was applied to replace 30% of chemical N fertilizer (30%MR) and v) Integrated N2020 and 30%MR with 100%RR after 2020 (INMR). Results illustrated that in the investigated calcareous soils, the calcium carbonate buffering system can keep pH at a high level for >150years.
View Article and Find Full Text PDFEnviron Sci Technol
April 2017
Agricultural soil acidification in China is known to be caused by the over-application of nitrogen (N) fertilizers, but the long-term impacts of different fertilization practices on intensive cropland soil acidification are largely unknown. Here, we further developed the soil acidification model VSD+ for intensive agricultural systems and validated it against observed data from three long-term fertilization experiments in China. The model simulated well the changes in soil pH and base saturation over the last 20 years.
View Article and Find Full Text PDF