Publications by authors named "Moritz Graeff"

Auxin efflux through plasma-membrane-integral PIN-FORMED (PIN) carriers is essential for plant tissue organization and tightly regulated. For instance, a molecular rheostat critically controls PIN-mediated auxin transport in developing protophloem sieve elements of Arabidopsis roots. Plasma-membrane-association of the rheostat proteins, BREVIS RADIX (BRX) and PROTEIN KINASE ASSOCIATED WITH BRX (PAX), is reinforced by interaction with PHOSPHATIDYLINOSITOL-4-PHOSPHATE-5-KINASE (PIP5K).

View Article and Find Full Text PDF

The effects of brassinosteroid signaling on shoot and root development have been characterized in great detail but a simple consistent positive or negative impact on a basic cellular parameter was not identified. In this study, we combined digital 3D single-cell shape analysis and single-cell mRNA sequencing to characterize root meristems and mature root segments of brassinosteroid-blind mutants and wild type. The resultant datasets demonstrate that brassinosteroid signaling affects neither cell volume nor cell proliferation capacity.

View Article and Find Full Text PDF

The phloem transport network is a major evolutionary innovation that enabled plants to dominate terrestrial ecosystems. In the growth apices, the meristems, apical stem cells continuously produce early 'protophloem'. This is easily observed in Arabidopsis root meristems, in which the differentiation of individual protophloem sieve element precursors into interconnected conducting sieve tubes is laid out in a spatio-temporal gradient.

View Article and Find Full Text PDF

MicroProteins are potent post-translational regulators. In Arabidopsis (Arabidopsis thaliana), the miP1a/b microProteins delay floral transition by forming a complex with CONSTANS (CO) and the co-repressor protein TOPLESS. To better understand the function of the miP1a microProtein in floral repression, we performed a genetic suppressor screen to identify suppressors of miP1a (sum) function.

View Article and Find Full Text PDF

The plant vasculature is an essential adaptation to terrestrial growth. Its phloem component permits efficient transfer of photosynthates between source and sink organs but also transports signals that systemically coordinate physiology and development. Here, we provide evidence that developing phloem orchestrates cellular behavior of adjacent tissues in the growth apices of plants, the meristems.

View Article and Find Full Text PDF

Methylation of lysine 4 in histone 3 (H3K4) is a post-translational modification that promotes gene expression. H3K4 methylation can be reversed by specific demethylases with an enzymatic Jumonji C domain. In , H3K4-specific JUMONJI (JMJ) proteins distinguish themselves by the association with an F/Y-rich (FYR) domain.

View Article and Find Full Text PDF

Plants continuously elaborate their bodies through post-embryonic, reiterative organ formation by apical meristems [1]. Meristems harbor stem cells, which produce daughter cells that divide repeatedly before they differentiate. How transitions between stemness, proliferation, and differentiation are precisely coordinated is not well understood, but it is known that phytohormones as well as peptide signals play important roles [2-7].

View Article and Find Full Text PDF

A defining feature of plant leaves is their flattened shape. This shape depends on an antagonism between the genes that specify adaxial (top) and abaxial (bottom) tissue identity; however, the molecular nature of this antagonism remains poorly understood. Class III homeodomain leucine zipper (HD-ZIP) transcription factors are key mediators in the regulation of adaxial-abaxial patterning.

View Article and Find Full Text PDF

MicroProteins are short, single domain proteins that act by sequestering larger, multi-domain proteins into non-functional complexes. MicroProteins have been identified in plants and animals, where they are mostly involved in the regulation of developmental processes. Here we show that two Arabidopsis thaliana microProteins, miP1a and miP1b, physically interact with CONSTANS (CO) a potent regulator of flowering time.

View Article and Find Full Text PDF

MicroProteins (miPs) are short, usually single-domain proteins that, in analogy to miRNAs, heterodimerize with their targets and exert a dominant-negative effect. Recent bioinformatic attempts to identify miPs have resulted in a list of potential miPs, many of which lack the defining characteristics of a miP. In this opinion article, we clearly state the characteristics of a miP as evidenced by known proteins that fit the definition; we explain why modulatory proteins misrepresented as miPs do not qualify as true miPs.

View Article and Find Full Text PDF

Stem cells in the shoot apex of plants produce cells required for the formation of new leaves. Adult leaves are composed of multiple tissue layers arranged along the dorso-ventral (adaxial/abaxial) axis. Class III homeodomain leucine zipper (HD-ZIPIII) transcription factors play an important role in the set-up of leaf polarity in plants.

View Article and Find Full Text PDF

Abstract Most proteins do not function alone but act in protein complexes. For several transcriptional regulators, it is known that they have to homo- or heterodimerize prior to DNA binding. These protein interactions occur through defined protein-protein-interaction (PPI) domains.

View Article and Find Full Text PDF