Publications by authors named "Monia Montorsi"

Environmentally sustainable methods for producing flexible electronics, such as paper-based energy harvesters in nanogenerators, are a major objective in materials science. In this frame, the present study investigated two different sp. strains (K2G30 and K2G44), never tested as biocatalysts for the production of bacterial cellulose (BC) functionalized with iron particles to provide potential electrical conductivity.

View Article and Find Full Text PDF

Paper is one of the most promising materials for food packaging and wrapping due to its low environmental impact, but surface treatments are often needed to improve its performance, e.g., the resistance to fats and oils.

View Article and Find Full Text PDF

In the present work, a statistical optimization of a sustainable coating for core-shell NPK (Nitrogen-Phosphorus-Potassium) fertilizers was investigated. The environmental green coating was enriched in nitrogen using a biomass and renewable source, namely the nitrogen rich fraction of black soldier fly larvae (BSFL) (Hermetia Illucens, Diptera: Stratiomyidae) reared on vegetable waste. A rational approach was proposed with the aim of calculating the best formulation of the coating, considering both its manufacturing behavior, such as adhesion to the core, and its physical properties, such as homogeneity or plasticity.

View Article and Find Full Text PDF

The building sector is responsible for a third of the global energy consumption and a quarter of greenhouse gas emissions. Phase change materials (PCMs) have shown high potential for latent thermal energy storage (LTES) through their integration in building materials, with the aim of enhancing the efficient use of energy. Although research on PCMs began decades ago, this technology is still far from being widespread.

View Article and Find Full Text PDF

Insects are becoming increasingly relevant as protein sources in food and feed. The Black Soldier Fly (BSF) is one of the most utilized, thanks to its ability to live on many leftovers. Vegetable processing industries produce huge amounts of by-products, and it is important to efficiently rear BSF on different substrates to assure an economical advantage in bioconversion and to overcome the seasonality of some leftovers.

View Article and Find Full Text PDF

In this study, an organic nitrogen-based coating was developed based on black soldier fly (BSF) prepupae reared on poultry dejections and deposited on ceramic lightweight aggregates (LWAs), containing phosphorous (P) and potassium (K) from agroresidues, leading to a complete nitrogen, phosphorus, and potassium (NPK) fertilizer. To obtain a resistant coating with good adhesion to LWAs, different plasticizing agents were tested (e.g.

View Article and Find Full Text PDF

Most of the leftovers from agricultural productions and industrial processing of vegetables are currently discarded as waste, augmenting production costs and environmental impacts. Black soldier flies (BSF) are non-pest insects that can grow on various types of organic materials. The larvae initially act as fast and efficient bioconverters, before being further valorized as biomass rich in proteins, fats and chitin.

View Article and Find Full Text PDF

In this study proteins extracted from prepupae of Hermetia illucens, also known as black soldier fly, are investigated as promising base for a new type of bioplastics for agricultural purposes. Design of experiments techniques are employed to perform a rational study on the effects of different combination of glycerol as plasticizer, citric acid as cross-linking agent and distilled water as solvent on the capability of proteins to form a free-standing film through casting technique, keeping as fixed the quantity of proteins. Glycerol shows interesting properties as plasticizer contributing to the formation of homogenous and free-standing film.

View Article and Find Full Text PDF

Bacterial cellulose is composed of an ultrafine nanofiber network and well-ordered structure; therefore, it offers several advantages when used as native polymer or in composite systems.In this study, a pool of 34 acetic acid bacteria strains belonging to Komagataeibacter xylinus were screened for their ability to produce bacterial cellulose. Bacterial cellulose layers of different thickness were observed for all the culture strains.

View Article and Find Full Text PDF

We report ab initio results for sub-stoichiometric HfO with different oxygen vacancy densities, useful in exploring microscopic mechanisms that govern the operation of RRAM devices. We demonstrate that oxygen vacancy filaments are energetically more stable than randomly distributed defects. Furthermore, the stability of the filaments increases with the number of confined oxygen vacancies.

View Article and Find Full Text PDF

The paper aims to explore the potential benefits provided by an organically modified montmorillonite (nanoclay) in the problematic management of the Helicobacter pylori gastric infection that is one of the most prevalent infectious diseases worldwide. Two nanoclay samples were produced by the intercalation of tetracycline (TC) into the interlayer of montmorillonite (MM) under two different pH reaction conditions (pH 3.0 and 8.

View Article and Find Full Text PDF

We present a novel process of immobilization of gold nanorods (GNRs) on a glass surface. We demonstrate that by exploiting monolayer protection of the GNRs, their unusual optical properties can be completely preserved. UV-visible spectroscopy and atomic force microscopy analysis are used to reveal the optical and morphological properties of monolayer protected immobilized lipophilic GNRs, and molecular dynamics simulations are used to elucidate their surface molecule arrangements.

View Article and Find Full Text PDF