Publications by authors named "Mohesh Moothanchery"

This study evaluated the therapeutic efficacy of combining a choline kinase alpha (ChoKα) inhibitor, MN58b, and temozolomide (TMZ) in a syngeneic GL261 glioblastoma (GBM) mouse model. It used MR spectroscopy (MRS) and intravoxel incoherent motion diffusion-weighted imaging (IVIM-DWI) to assess metabolic and microstructural changes within the tumor. Fifty-two C57BL/6 mice had GL261 cells implanted intracranially and were divided into four groups: saline control, MN58b, TMZ, and MN58b + TMZ (n = 16, 14, 11, and 11, respectively).

View Article and Find Full Text PDF

Atopic dermatitis (AD), a chronic inflammatory condition, is closely associated with obesity and type 2 diabetes mellitus (diabetes/DM). For the first time, using high-resolution photoacoustic imaging (PAI) and in-house-developed handheld confocal Raman spectroscopy (CRS), we studied in 35 subjects the dermal microvascular architecture, epidermal biochemical profiles and skin alterations in AD with DM and obesity. Utilizing the imaging-derived markers, we observed pronounced dermal hypervascularization in DM and obesity, worsening with AD, as reflected by altered oxygen saturation and epidermal biochemicals.

View Article and Find Full Text PDF

Background: Equine odontoclastic tooth resorption and hypercementosis (EOTRH) is a painful disorder primarily affecting the incisor teeth of horses over 15 years of age. Clinical signs of the disease include prehension problems, halitosis and in severe cases weight loss. The disease predominately affects the reserve crown and presents as a loss of dental tissue and excessive build-up of cementum.

View Article and Find Full Text PDF

Photoacoustic tomography (PAT) is increasingly being used for high-resolution biological imaging at depth. Signal-to-noise ratios and resolution are the main factors that determine image quality. Various reconstruction algorithms have been proposed and applied to reduce noise and enhance resolution, but the efficacy of signal preprocessing methods which also affect image quality, are seldom discussed.

View Article and Find Full Text PDF

Atopic dermatitis (AD) is a chronic and pruritic skin inflammatory disease causing a significant burden to health care management and patient's quality of life. Seemingly healthy skin or non-lesional sites on AD patients still presents skin barrier defects and immune response, which can develop to AD at a later stage. To investigate further the balance between the epidermal barrier impairment and intrinsic immune dysregulation in AD, we exploited multispectral Raster-Scanning Optoacoustic Mesoscopy (ms-RSOM) to image lesional and non-lesional skin areas on AD patients of different severities non-invasively to elucidate their structural features and functional information.

View Article and Find Full Text PDF

Raman spectroscopy (RS) is a widely used non-destructive technique for biosensing applications because of its ability to detect unique 'fingerprint' spectra of biomolecules from the vibrational bands. To detect these weak fingerprint spectra, a complex detection system consisting of expensive detectors and optical components are needed. As a result, surface enhanced Raman spectroscopy (SERS) method were used to increase the Raman signal multifold beyond 10 times.

View Article and Find Full Text PDF

Atopic dermatitis (AD) is a common chronic inflammatory skin dermatosis condition due to skin barrier dysfunction that causes itchy, red, swollen, and cracked skin. Currently, AD severity clinical scores are subjected to intra- and inter-observer differences. There is a need for an objective scoring method that is sensitive to skin barrier differences.

View Article and Find Full Text PDF

To date, studies which utilized ultrasound (US) and optoacoustic tomography (OT) fusion (US-OT) in biochemical differentiation of malignant and benign breast conditions have relied on limited biochemical data such as oxyhaemoglobin (OH) and deoxyhaemoglobin (DH) only. There has been no data of the largest biochemical components of breast fibroglandular tissue: lipid and collagen. Here, the authors believe the ability to image collagen and lipids within the breast tissue could serve as an important milestone in breast US-OT imaging with many potential downstream clinical applications.

View Article and Find Full Text PDF

The ability to monitor oxygen delivery in microvasculature plays a vital role in measuring the viability of skin tissue and the probability of recovery. Using currently available clinical imaging tools, it is difficult to observe non-invasive hemodynamic regulation in the peripheral vessels. Here we propose the use of a novel multispectral raster-scanning optoacoustic mesoscopy (RSOM) system for noninvasive clinical monitoring of hemodynamic changes in the skin microvasculature's oxy- (HbO) and deoxy-hemoglobin (Hb), total hemoglobin (HbT) and oxygen saturation (rsO).

View Article and Find Full Text PDF

Breast conserving surgery (BCS) offering similar surgical outcomes as mastectomy while retaining breast cosmesis is becoming increasingly popular for the management of early stage breast cancers. However, its association with reoperation rates of 20% to 40% following incomplete tumor removal warrants the need for a fast and accurate intraoperative surgical margin assessment tool that offers cellular, structural and molecular information of the whole specimen surface to a clinically relevant depth. Biophotonic technologies are evolving to qualify as such an intraoperative tool for clinical assessment of breast cancer surgical margins at the microscopic and macroscopic scale.

View Article and Find Full Text PDF

In this pilot study, we tested an ultrasound-guided optoacoustic tomography (US-OT) two-dimensional (2D) array scanner to understand the optoacoustic patterns of excised breastconserving surgery (BCS) specimens. We imaged 14 BCS specimens containing malignant tumors at eight wavelengths spanning 700-1100 nm. Spectral unmixing across multiple wavelengths allowed for visualizing major intrinsic chromophores in the breast tissue including hemoglobin and lipid up to a depth of 7 mm.

View Article and Find Full Text PDF

Background: We developed the first-of-its-kind handheld confocal Raman spectroscopy (CRS) system to quantify the concentration of natural moisturizing factors in the skin.

Objective: To evaluate the feasibility of our handheld CRS system and propose a novel quantitative index to measure skin barrier function.

Methods: This prospective study included 30 atopic dermatitis (AD) patients and 14 healthy volunteers.

View Article and Find Full Text PDF

Photoacoustic imaging (or optoacoustic imaging) is an upcoming biomedical imaging modality availing the benefits of optical resolution and acoustic depth of penetration. With its capacity to offer structural, functional, molecular and kinetic information making use of either endogenous contrast agents like hemoglobin, lipid, melanin and water or a variety of exogenous contrast agents or both, PAI has demonstrated promising potential in a wide range of preclinical and clinical applications. This review provides an overview of the rapidly expanding clinical applications of photoacoustic imaging including breast imaging, dermatologic imaging, vascular imaging, carotid artery imaging, musculoskeletal imaging, gastrointestinal imaging and adipose tissue imaging and the future directives utilizing different configurations of photoacoustic imaging.

View Article and Find Full Text PDF

Purpose: To determine the accuracy of a handheld ultrasound-guided optoacoustic tomography (US-OT) probe developed for human deep-tissue imaging in ex vivo assessment of tumor margins postlumpectomy.

Methods: A custom-built two-dimensional (2D) US-OT-handheld probe was used to scan 15 lumpectomy breast specimens. Optoacoustic signals acquired at multiple wavelengths between 700 and 1100 nm were reconstructed using model linear algorithm, followed by spectral unmixing for lipid and deoxyhemoglobin (Hb).

View Article and Find Full Text PDF

Photoacoustic microscopy (PAM) can be classified as optical resolution (OR)-PAM and acoustic resolution (AR)-PAM depending on the type of resolution achieved. Using microelectromechanical systems (MEMS) scanner, high-speed OR-PAM system was developed earlier. Depth of imaging limits the use of OR-PAM technology for many preclinical and clinical imaging applications.

View Article and Find Full Text PDF

Photoacoustic microscopy (PAM) is a fast-growing biomedical imaging technique that provides high-resolution in vivo imaging beyond the optical diffusion limit. Depending on the scalable lateral resolution and achievable penetration depth, PAM can be classified into optical resolution PAM (OR-PAM) and acoustic resolution PAM (AR-PAM). The use of a microelectromechanical systems (MEMS) scanner has improved OR-PAM imaging speed significantly and is highly beneficial in the development of miniaturized handheld devices.

View Article and Find Full Text PDF

Pressure ulcer formation is a common problem among patients confined to bed or restricted to wheelchairs. The ulcer forms when the affected skin and underlying tissues go through repeated cycles of ischemia and reperfusion, leading to inflammation. This theory is evident by intravital imaging studies performed in immune cell-specific, fluorescent reporter mouse skin with induced ischemia-reperfusion (I-R) injuries.

View Article and Find Full Text PDF

Due to the embedded nature of the lamina cribrosa (LC) microcapillary network, conventional imaging techniques have failed to obtain the high-resolution images needed to assess the perfusion state of the LC. In this study, both optical resolution (OR) and acoustic resolution (AR) photoacoustic microscopy (PAM) techniques were used to obtain static and dynamic information about LC perfusion in ex vivo porcine eyes. The OR-PAM system could resolve a perfused LC microcapillary network with a lateral resolution of 4.

View Article and Find Full Text PDF

Photoacoustic microscopy (PAM) is a multiscale imaging technique. In optical-resolution photoacoustic microscopy (OR-PAM), a single mode (SM) fiber is normally used as the source of optical excitation to be focused into a diffraction-limited spot. Recent advances in OR-PAM have improved its imaging speed using microelectromechanical systems (MEMS).

View Article and Find Full Text PDF

The use of an optical resolution photoacoustic microscopy (OR-PAM) system to evaluate the vascular disruptive effect of combretastatin A4 Phosphate (CA4P) on a murine orthotopic glioma with intact skull is described here. Second generation optical-resolution photoacoustic microscopy scanner with a 532 nm pulsed diode-pumped solid-state laser that specifically matches the absorption maximum of hemoglobin in tissues was used to image orthotopic glioma inoculated in mouse brain. Two-dimensional maps of brain vasculature with a lateral resolution of 5 μm and a depth of 700 μm at a field of view 5 × 4 mm were acquired on normal brain and glioma brain.

View Article and Find Full Text PDF

Microneedle technology allows micron-sized conduits to be formed within the outermost skin layers for both localized and systemic delivery of therapeutics including nanoparticles. Histological methods are often employed for characterization, and unfortunately do not allow for the visualization of the delivery process. This study presents the utilization of optical resolution-photoacoustic microscopy to characterize the transdermal delivery of nanoparticles using microneedles.

View Article and Find Full Text PDF

Photoacoustic microscopy (PAM) is a fast-growing invivo imaging modality that combines both optics and ultrasound, providing penetration beyond the optical mean free path (~1 mm in skin) with high resolution. By combining optical absorption contrast with the high spatial resolution of ultrasound in a single modality, this technique can penetrate deep tissues. Photoacoustic microscopy systems can have either a low acoustic resolution and probe deeply or a high optical resolution and probe shallowly.

View Article and Find Full Text PDF

Photoinduced shrinkage occurring in photopolymer layers during holographic recording was determined by phase shifting electronic speckle pattern interferometry. Phase maps were calculated from the changes in intensity at each pixel due to the phase differences introduced between object and reference beams. Shrinkage was then obtained from the changes in phase as recording proceeded.

View Article and Find Full Text PDF