Comput Biol Med
September 2025
With the rise of wearable, affordable solutions using integrated circuits like the AD5933, noise reduction in bioimpedance data has become increasingly important. In this paper, we present an automated method for the realization of a digital filter for noise reduction in bioimpedance data. Unlike traditional methods that require manual tuning, our approach automatically adjusts the filter coefficients based on the characteristics of the incoming bioimpedance data - specifically by minimizing the smoothness difference between consecutive filtered data points.
View Article and Find Full Text PDFNoise reduction is essential in analyzing electrochemical impedance spectroscopy (EIS) data for accurate parameter identification of models of electrochemical sources and interfaces. EIS is widely used to study the behavior of electrochemical systems as it provides information about the processes occurring at electrode surfaces. However, measurement noise can severely compromise the accuracy of parameter identification and the interpretation of EIS data.
View Article and Find Full Text PDFBACKGROUND Measurement of bite force plays a crucial role in assessment of the masticatory system. With a growing interest in detecting occlusal irregularities, bite force sensors have garnered attention in the biomedical field. This study aimed to introduce a hydrogel bite force sensor, based on hydroxyethyl-cellulose-fructose-water (HEC-F-water), for premolar and molar teeth, and to evaluate it using optical profilometry, infrared spectroscopy (FTIR), and Instron Tension testing system, with 2.
View Article and Find Full Text PDFThis work presents a novel approach towards integrating electronic components with textiles, by successfully creating a fully textile-based element that is capable of detecting applied forces by variation in its resistance value. The fabrication of the device consists of a specialized siliconized conductive fabric, which is placed above and below a layer of switch fabric, which acts as a force sensor. In this paper, the effects of three different geometries are observed, as well as the washability of the device, along with tension testing.
View Article and Find Full Text PDFA novel method for embedded hardware-based parameter estimation of the Cole model of bioimpedance is developed and presented. The model parameters R, R and C are estimated using the derived set of equations based on measured values of real (R) and imaginary part (X) of bioimpedance, as well as the numerical approximation of the first derivative of quotient R/X with respect to angular frequency. The optimal value for parameter α is estimated using a brute force method.
View Article and Find Full Text PDFUnlabelled: Owing to the rapid development in the field of e-textile-based flexible and portable sensors, the present work demonstrates a fully textile-based stretchable face mask humidity sensor which was created using digital embroidery technique. The design of the sensor was comprised of interdigitated structured electrodes made up of polymer core-based conductive silver-coated threads and hygroscopic threads embedded between them. The fabricated sensor performed well towards moisture detection in accordance with the principle where resistance of the face mask sensor decreased with the increase in the relative humidity along with the changing operational frequency in the range from 1 Hz to 200 kHz.
View Article and Find Full Text PDFPersonal heating systems are getting increasing interest because of the need to reduce the negative impact of cold weather on the health of people and animals. Heating the air before inhalation is of great importance as it can reduce the probability of various diseases. In this paper, we present a textile-based heater composed of commercial conductive threads, embroidered on an ordinary protective facemask.
View Article and Find Full Text PDFBiosensors (Basel)
December 2022
Drug delivery systems are engineered platforms for the controlled release of various therapeutic agents. This paper presents a conductive gold leaf-based microfluidic platform fabricated using xurography technique for its potential implication in controlled drug delivery operations. To demonstrate this, peppermint and eucalyptus essential oils (EOs) were selected as target fluids, which are best known for their medicinal properties in the field of dentistry.
View Article and Find Full Text PDFThe COVID-19 pandemic has created a situation where wearing personal protective masks is a must for every human being and introduced them as a part of everyday life. This work demonstrates a new functionality embedded in single-use face masks through an embroidered humidity sensor. The design of the face mask humidity sensor is comprised of interdigitated electrodes made of polyamide-based conductive threads and common polyester threads which act as a dielectric sensing layer embroidered between them.
View Article and Find Full Text PDFIn recent years, after the ongoing success in the creation of portable electronic devices, an increasing effort has been put in creating wearable devices capable of sensing multiple parameters while being imperceptible to the user. A field that has recently gained attention due to this is that of textile electronics. For this purpose, one of the most commonly used materials is conductive threads, capable of sustaining an electrical connection, while at the same time being part of a garment.
View Article and Find Full Text PDFBecause of the aging human population and increased numbers of surgical procedures being performed, there is a growing number of biomedical devices being implanted each year. Although the benefits of implants are significant, there are risks to having foreign materials in the body that may lead to complications that may remain undetectable until a time at which the damage done becomes irreversible. To address this challenge, advances in implantable sensors may enable early detection of even minor changes in the implants or the surrounding tissues and provide early cues for intervention.
View Article and Find Full Text PDFSo far, various approaches have been proposed to improve dermal drug delivery. The use of chemical penetration enhancers has a long history of application, while methods based on the electrical current (such as iontophoresis) stand out as promising "active" techniques. Aiming to evaluate the contribution of different approaches to dermal delivery, in this work curcumin-loaded nanoemulsions with and without monoterpenes (eucalyptol or pinene) as chemical penetration enhancers, and a custom-made adhesive dermal delivery system based on iontophoresis were designed and assessed.
View Article and Find Full Text PDFBiosensors (Basel)
May 2022
Respiration monitoring is a very important indicator of health status. It can be used as a marker in the recognition of a variety of diseases, such as sleep apnea, asthma or cardiac arrest. The purpose of the present study is to overcome limitations of the current state of the art in the field of respiration monitoring systems.
View Article and Find Full Text PDFWearable sensors have become part of our daily life for health monitoring. The detection of moisture content is critical for many applications. In the present research, textile-based embroidered sensors were developed that can be integrated with a bandage for wound management purposes.
View Article and Find Full Text PDFHumanitarian demining is a worldwide effort and the range of climates and environments prevent any one detection method being suitable for all sites, so more tools are required for safe and efficient explosives sensing. Landmines emit a chemical flux over time, and honeybees can collect the trace residues of explosives (as particles or as vapour) on their body hairs. This capability was exploited using a passive method allowing the honeybees to freely forage in a mined area, where trace explosives present in the environment stuck to the honeybee body, which were subsequently transferred onto an adsorbent material for analysis by a fluorescent polymer sensor.
View Article and Find Full Text PDFThis study aims to discuss the synthesis and fabrication of SnO-InO-based thick-films and their biosensing applications. The structural characterization of SnO-InO nanocomposites was performed using X-ray diffraction, Raman spectroscopy and transmission electron microscopy. Furthermore, the screen-printing technology was used in the fabrication of conductive electrodes to form an interdigitated capacitive structure, and the sensor layer based on the mixture of SnO and InO.
View Article and Find Full Text PDF