Leukemia
February 2024
Myocardial infarction (MI) is a leading cause of maladaptive cardiac remodeling and heart failure. In the damaged heart, loss of function is mainly due to cardiomyocyte death and remodeling of the cardiac tissue. The current study shows that A-kinase anchoring protein 2 (AKAP2) orchestrates cellular processes favoring cardioprotection in infarcted hearts.
View Article and Find Full Text PDFSelf-renewal is a key characteristic of leukemia stem cells (LSCs) responsible for the development and maintenance of leukemia. In this study, we identify CD93 as an important regulator of self-renewal and proliferation of murine and human LSCs, but not hematopoietic stem cells (HSCs). The intracellular domain of CD93 promotes gene transcription via the transcriptional regulator SCY1-like pseudokinase 1 independently of ligation of the extracellular domain.
View Article and Find Full Text PDFWorld J Stem Cells
May 2020
Autophagy is a highly regulated catabolic process in which superfluous, damaged organelles and other cytoplasmic constituents are delivered to the lysosome for clearance and the generation of macromolecule substrates during basal or stressed conditions. Autophagy is a bimodal process with a context dependent role in the initiation and the development of cancers. For instance, autophagy provides an adaptive response to cancer stem cells to survive metabolic stresses, by influencing disease propagation modulation of essential signaling pathways or by promoting resistance to chemotherapeutics.
View Article and Find Full Text PDFDiffuse large B-cell lymphoma is the most common malignant lymphoma in adults. By gene-expression profiling, this lymphoma is divided in three cell-of-origin subtypes with distinct molecular and clinical features. Most lymphomas arise sporadically, yet familial clustering is known, suggesting a genetic contribution to disease risk.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Cell Res
December 2017
Doxorubicin (DOX) is a chemotherapic agent that is widely used to treat hematological and solid tumors. Despite its efficacy, DOX displays significant cardiac toxicity associated with cardiomyocytes death and heart failure. Cardiac toxicity is mainly associated with the ability of DOX to alter mitochondrial function.
View Article and Find Full Text PDFBiochim Biophys Acta
July 2016
Heart and blood vessels ensure adequate perfusion of peripheral organs with blood and nutrients. Alteration of the homeostatic functions of the cardiovascular system can cause hypertension, atherosclerosis, and coronary artery disease leading to heart injury and failure. A-kinase anchoring proteins (AKAPs) constitute a family of scaffolding proteins that are crucially involved in modulating the function of the cardiovascular system both under physiological and pathological conditions.
View Article and Find Full Text PDFThe epigenetic influence of maternal cells on the development of their progeny has long been studied in various eukaryotes. Multicellular organisms usually provide their zygotes not only with nutrients but also with functional elements required for proper development, such as coding and non-coding RNAs. These maternally deposited RNAs exhibit a variety of functions, from regulating gene expression to assuring genome integrity.
View Article and Find Full Text PDFGenome-wide DNA remodelling in the ciliate Paramecium is ensured by RNA-mediated trans-nuclear crosstalk between the germline and the somatic genomes during sexual development. The rearrangements include elimination of transposable elements, minisatellites and tens of thousands non-coding elements called internally eliminated sequences (IESs). The trans-nuclear genome comparison process employs a distinct class of germline small RNAs (scnRNAs) that are compared against the parental somatic genome to select the germline-specific subset of scnRNAs that subsequently target DNA elimination in the progeny genome.
View Article and Find Full Text PDFNucleic Acids Res
August 2014
During the development of the somatic genome from the Paramecium germline genome the bulk of the copies of ∼45 000 unique, internal eliminated sequences (IESs) are deleted. IES targeting is facilitated by two small RNA (sRNA) classes: scnRNAs, which relay epigenetic information from the parental nucleus to the developing nucleus, and iesRNAs, which are produced and used in the developing nucleus. Why only certain IESs require sRNAs for their removal has been enigmatic.
View Article and Find Full Text PDFIn eukaryotes, small RNAs (sRNAs) have key roles in development, gene expression regulation, and genome integrity maintenance. In ciliates, such as Paramecium, sRNAs form the heart of an epigenetic system that has evolved from core eukaryotic gene silencing components to selectively target DNA for deletion. In Paramecium, somatic genome development from the germline genome accurately eliminates the bulk of typically gene-interrupting, noncoding DNA.
View Article and Find Full Text PDF