Herein, we describe the design and synthesis of 16 neo-glycolipids that are potential permeation enhancers for oral drug delivery of peptide therapeutics. These amphiphilic neo-glycolipids are composed of fatty acids and various carbohydrates (d-glucose, lactose, cellobiose, maltose) via an oxime linker. The ability of the synthesized neo-glycolipids to enhance permeation of fluorescein-labelled dextran (4 kDa) or H-mannitol across intestinal epithelium was investigated in vitro using monolayers of human epithelial Caco-2 cells.
View Article and Find Full Text PDFWe developed a synthesis strategy involving a diazo transfer reaction and subsequent click reaction to conjugate a murine cathelicidin-related antimicrobial peptide (CRAMP) to chitosan and hydroxypropyl chitosan (HPC), confirmed the structure, and investigated the antimicrobial activity. Chitosan azide and HPC-azide were prepared with a low degree of azidation by reacting the parent chitosan and HPC with imidazole sulfonyl azide hydrochloride. CRAMP carrying an N-terminal pentynoyl group was successfully grafted onto chitosan and HPC via copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction.
View Article and Find Full Text PDFChemical modifications to proteins have wide applications. They may be used in, for example, the production of biopharmaceuticals and fluorescent probes. Despite their importance, highly regioselective chemical protein modifications are often challenging to achieve.
View Article and Find Full Text PDFReceptors that distinguish the multitude of microbes surrounding plants in the environment enable dynamic responses to the biotic and abiotic conditions encountered. In this study, we identify and characterise a glycan receptor kinase, EPR3a, closely related to the exopolysaccharide receptor EPR3. Epr3a is up-regulated in roots colonised by arbuscular mycorrhizal (AM) fungi and is able to bind glucans with a branching pattern characteristic of surface-exposed fungal glucans.
View Article and Find Full Text PDFQuinones are electrophilic compounds that can undergo Michael addition or Schiff base reaction with nucleophilic amines, but the effect of temperature has not been systematically studied. The aim of this study was to characterize how temperature affects the reaction mechanism and kinetics of 4-methylbenzoquinone (4MBQ) with lysine (Lys), N-acetyl Lys or N-acetyl Lys. The products were identified and characterized by LC-MS/MS, which revealed formation of Michael addition products, Schiff base, and a di-adduct in Lys and N-acetyl Lys-containing reaction mixtures.
View Article and Find Full Text PDFThe chemical modification of proteins is of great importance in chemical biology, biotechnology, and for the production of modified biopharmaceuticals, as it enables introduction of fluorophores, biotin, half-life extending moieties, and more. We have developed two methods that use poly-His sequences to direct the highly selective acylation of proteins, either at the N-terminus or at a specific Lys residue. For the former, we used an N-terminal Gly-His segment (Gly-His tag) that directed acylation of the N-terminal N -amine with 4-methoxyphenyl esters, resulting in stable conjugates.
View Article and Find Full Text PDFChemical modification of proteins has numerous applications, but it has been challenging to achieve the required high degree of selectivity on lysine amino groups. Recently, we described the highly selective acylation of proteins with an N-terminal Gly-His segment. This tag promoted acylation of the N-terminal N -amine resulting in stable conjugates.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2021
Plants and animals use cell surface receptors to sense and interpret environmental signals. In legume symbiosis with nitrogen-fixing bacteria, the specific recognition of bacterial lipochitooligosaccharide (LCO) signals by single-pass transmembrane receptor kinases determines compatibility. Here, we determine the structural basis for LCO perception from the crystal structures of two lysin motif receptor ectodomains and identify a hydrophobic patch in the binding site essential for LCO recognition and symbiotic function.
View Article and Find Full Text PDFHere we describe the first synthesis of a new type of polysaccharides derived from chitosan. In these structures, the 2-amino group on the pyranose ring was quantitively replaced by an aromatic 1,2,3-triazole moiety. The 2-amino group of chitosan and di-TBDMS chitosan was converted into an azide by diazo transfer reaction.
View Article and Find Full Text PDFPeptidoglycan (PG) is made of a polymer of disaccharides organized as a three-dimensional mesh-like network connected together by peptidic cross-links. PG is a dynamic structure that is essential for resistance to environmental stressors. Remodeling of PG occurs throughout the bacterial life cycle, particularly during bacterial division and separation into daughter cells.
View Article and Find Full Text PDFPlants evolved lysine motif (LysM) receptors to recognize and parse microbial elicitors and drive intracellular signaling to limit or facilitate microbial colonization. We investigated how chitin and nodulation (Nod) factor receptors of initiate differential signaling of immunity or root nodule symbiosis. Two motifs in the LysM1 domains of these receptors determine specific recognition of ligands and discriminate between their in planta functions.
View Article and Find Full Text PDFJ Chromatogr B Analyt Technol Biomed Life Sci
February 2020
ACS Appl Mater Interfaces
January 2020
Inhaled antibiotic treatment of cystic fibrosis-related bacterial biofilm infections is challenging because of the pathological environment of the lungs. Here, we present an "environment-adaptive" nanoparticle composed of a solid poly lactic--glycolic acid (PLGA) core and a mucus-inert, enzymatically cleavable shell of d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) for the site-specific delivery of antibiotics to bacterial biofilms via aerosol administration. The hybrid nanoparticles with ultrasmall size were self-assembled via a nanoprecipitation process by using a facile microfluidic method.
View Article and Find Full Text PDFPlants associate with beneficial arbuscular mycorrhizal fungi facilitating nutrient acquisition. Arbuscular mycorrhizal fungi produce chitooligosaccharides (COs) and lipo-chitooligosaccharides (LCOs), that promote symbiosis signalling with resultant oscillations in nuclear-associated calcium. The activation of symbiosis signalling must be balanced with activation of immunity signalling, which in fungal interactions is promoted by COs resulting from the chitinaceous fungal cell wall.
View Article and Find Full Text PDFMorphogens provide positional information and their concentration is key to the organized development of multicellular organisms. Nitrogen-fixing root nodules are unique organs induced by Nod factor-producing bacteria. Localized production of Nod factors establishes a developmental field within the root where plant cells are reprogrammed to form infection threads and primordia.
View Article and Find Full Text PDFMethods for site-selective chemistry on proteins are in high demand for the synthesis of chemically modified biopharmaceuticals, as well as for applications in chemical biology, biosensors and more. Inadvertent N-terminal gluconoylation has been reported during expression of proteins with an N-terminal His tag. Here we report the development of this side-reaction into a general method for highly selective N-terminal acylation of proteins to introduce functional groups.
View Article and Find Full Text PDFRecognition of Nod factors by LysM receptors is crucial for nitrogen-fixing symbiosis in most legumes. The large families of LysM receptors in legumes suggest concerted functions, yet only NFR1 and NFR5 and their closest homologs are known to be required. Here we show that an epidermal LysM receptor (NFRe), ensures robust signalling in .
View Article and Find Full Text PDFThe reaction of unprotected carbohydrates with aminooxy reagents to provide oximes is a key method for the construction of glycoconjugates. Aniline and derivatives serve as organocatalysts for the formation of oximes from simple aldehydes, and we have previously reported that aniline also catalyzes the formation of oximes from the more complex aldehydes, carbohydrates. Here, we present a comprehensive study of the effect of aniline analogues on the formation of carbohydrate oximes and related glycoconjugates depending on organocatalyst structure, pH, nucleophile, and carbohydrate, covering more than 150 different reaction conditions.
View Article and Find Full Text PDFGlycobiology, in particular the study of carbohydrate-protein interactions and the events that follow, has become an important research focus in recent decades. To study these interactions, many assays require homogeneous glycoconjugates in suitable amounts. Their synthesis is one of the methodological challenges of glycobiology.
View Article and Find Full Text PDFJ Med Chem
September 2017
Noncovalent binding of biopharmaceuticals to human serum albumin protects against enzymatic degradation and renal clearance. Herein, we investigated the effect of mono- or divalent small-molecule albumin binders for half-life extension of peptides. For proof-of-principle, the clinically relevant glucagon-like peptide 1 (GLP-1) was functionalized with diflunisal, indomethacin, or both.
View Article and Find Full Text PDFGlycobiology is the comprehensive biological investigation of carbohydrates. The study of the role and function of complex carbohydrates often requires the attachment of carbohydrates to surfaces, their tagging with fluorophores, or their conversion into natural or non-natural glycoconjugates, such as glycopeptides or glycolipids. Glycobiology and its "omics", glycomics, require easy and robust chemical methods for the construction of these glycoconjugates.
View Article and Find Full Text PDFNovel principles for optimizing the properties of peptide-based drugs are needed in order to leverage their full pharmacological potential. We present the design, synthesis, and evaluation of a library of neoglycolipidated glucagon-like peptide 1 (GLP-1) analogues, which are valuable drug candidates for treatment of type 2 diabetes and obesity. Neoglycolipidation of GLP-1 balanced the lipophilicity, directed formation of soluble oligomers, and mediated albumin binding.
View Article and Find Full Text PDFIn the symbiosis formed between Mesorhizobium loti strain R7A and Lotus japonicus Gifu, rhizobial exopolysaccharide (EPS) plays an important role in infection thread formation. Mutants of strain R7A affected in early exopolysaccharide biosynthetic steps form nitrogen-fixing nodules on L. japonicus Gifu after a delay, whereas mutants affected in mid or late biosynthetic steps induce uninfected nodule primordia.
View Article and Find Full Text PDFHere, we bind the sodium dependent amino acid transporter on nitrilotriacetic acid/polyethylene glycol functionalized gold sensors in detergents and perform a detergent-lipid exchange with phosphatidylcholine. We characterize the LeuT structure in the adsorbed film by magnetic contrast neutron reflection using the predicted model from molecular dynamic simulations.
View Article and Find Full Text PDF