Publications by authors named "Mikiko Kojima"

Plant shoot stem cells generate organs essential for food, feed, and biofuels. However, plant single-cell analyses struggled to capture these rare cells or to detect stem cell regulators like CLAVATA3 and WUSCHEL. Here, we dissected stem cell-enriched shoot tissues from maize and Arabidopsis for single-cell RNA sequencing (scRNA-seq), and we optimized protocols to recover thousands of CLAVATA3- and WUSCHEL-expressing cells.

View Article and Find Full Text PDF

Wood is formed as plants expand in thickness through radial growth, which initiates after apical growth. At the onset of radial growth, dormant procambial cells in the vasculature become active and act as bifacial cambium stem cells, which produce xylem (wood) inward and phloem outward. Cytokinin has been implicated in radial growth initiation; however, its precise mechanisms, especially at the cellular level, remain unclear.

View Article and Find Full Text PDF

Tomato (Solanum lycopersicum) is a globally important crop, typically requiring pollination for fruit set. Seedless fruit production-fruit set without pollination (parthenocarpy)-is a desirable trait for horticulture, though its molecular mechanisms are not fully understood. Research on tomato fruit set has largely focused on phytohormones like auxin and gibberellins (GAs), while the role of jasmonic acid (JA) remains unclear.

View Article and Find Full Text PDF

The perennial life cycle involves the reiterative development of sexual and asexual organs. Asexual structures such as rhizomes are found in various plant species, fostering extensive growth and competitive advantages. In the African wild rice Oryza longistaminata, we investigated the formation of rhizomes from axillary buds, which notably bend diagonally downward of the main stem, as the factors determining whether axillary buds become rhizomes or tillers are unclear.

View Article and Find Full Text PDF

Callus cultures are fundamental for plant propagation, genetic transformation, and emerging biotechnological applications that use cellular factories to produce high-value metabolites like plant-based drugs. These applications exploit the diverse metabolic capabilities of various plant species. However, optimizing culture conditions for specific applications necessitates a deep understanding of the transcriptome, metabolome, and phytohormone profiles of different species.

View Article and Find Full Text PDF

Plant cell culture has multiple applications in biotechnology and horticulture, from plant propagation to the production of high-value biomolecules. However, the interplay between cellular diversity and ambient conditions influences the metabolism of cultured tissues; understanding these factors in detail will inform efforts to optimize culture conditions. This study presents multiomics datasets from callus cultures of tobacco (Nicotiana tabacum), rice (Oryza sativa), and two bamboo species (Phyllostachys nigra and P.

View Article and Find Full Text PDF

Marchantia polymorpha reproduces vegetatively (asexually) by producing propagules known as gemmae within gemma cups and sexually through spores. We previously reported that KARRIKIN INSENSITIVE2 (KAI2)-dependent signaling promotes gemma cup and gemma formation. KAI2A perceives unidentified endogenous ligand(s), tentatively referred to as KAI2 ligands (KL).

View Article and Find Full Text PDF

Background: Finger millet, a C plant with mesophyll and bundle sheath cells, has been cultivated at high altitudes in the Himalayas owing to its adaptability to stressful environments. Under environmental stresses such as high light and drought, finger millet mesophyll chloroplasts move toward the bundle sheath, a phenomenon known as aggregative arrangement.

Methods: To investigate the effect of low temperatures on mesophyll chloroplast arrangement in finger millet, we conducted microscopic observations and photochemical measurements using leaves treated at different temperatures in light or darkness, with or without pharmacological inhibitors.

View Article and Find Full Text PDF

The directional and sequential flow of cytokinin in plants is organized by a complex network of transporters. Genes involved in several aspects of cytokinin transport have been characterized; however, much of the elaborate system remains elusive. In this study, we used a transient expression system in tobacco (Nicotiana benthamiana) leaves to screen Arabidopsis (Arabidopsis thaliana) transporter genes and isolated ATP-BINDING CASSETTE TRANSPORTER C4 (ABCC4).

View Article and Find Full Text PDF

Host plants benefit from legume root nodule symbiosis with nitrogen-fixing bacteria under nitrogen-limiting conditions. In this interaction, the hosts must regulate nodule numbers and distribution patterns to control the degree of symbiosis and maintain root growth functions. The host response to symbiotic bacteria occurs discontinuously but repeatedly at the region behind the tip of the growing roots.

View Article and Find Full Text PDF
Article Synopsis
  • Plants live with tiny germs and fungi that can help them grow better and deal with tough conditions.
  • Scientists studied a plant called Arabidopsis thaliana and a helpful fungus named Serendipita indica to see how they work together.
  • They found out that certain genes play a big role in how the fungus helps the plant grow by changing the way a growth hormone called auxin works in the plant's roots.
View Article and Find Full Text PDF
Article Synopsis
  • Ectopic overexpression of developmental regulator genes can enhance plant transformation by promoting cellular differentiation, although plant growth regulators are still needed in the process.
  • The study examined how specific gene fusions influenced the differentiation of tobacco transgenic cells without the use of plant growth regulators, finding significant effects.
  • RNA-seq and phytohormone analyses revealed that certain hormone levels increased during differentiation, leading to the identification of differentially expressed genes related to organogenesis and metabolism, which can aid in developing PGR-free tissue cultures for various plant species.
View Article and Find Full Text PDF

Many previous studies have suggested that various plant hormones play essential roles in the grafting process. In this study, to understand the plant hormones that accumulate in the graft junctions, whether these are supplied from the scion or rootstock, and how these hormones play a role in the grafting process, we performed a hormonome analysis that accumulated in the incision site of the upper plants from the incision as "ungrafted scion" and lower plants from the incision as "ungrafted rootstock" in . The results revealed that indole-3-acetic acid (IAA) and gibberellic acid (GA), which regulate cell division; abscisic acid (ABA) and jasmonic acid (JA), which regulate xylem formation; cytokinin (CK), which regulates callus formation, show different accumulation patterns in the incision sites of the ungrafted scion and rootstock.

View Article and Find Full Text PDF
Article Synopsis
  • Stem cells in plant shoots are super important because they help make leaves, fruits, and seeds, which we need for food and energy.
  • Scientists are trying to figure out how to make these plants grow better by studying the special genes in stem cells.
  • In this research, they used advanced tools to find important genes in stem cells from maize and arabidopsis plants, and their findings can help improve how crops grow in the future.
View Article and Find Full Text PDF

In the final step of cytokinin biosynthesis, the main pathway is the elimination of a ribose-phosphate moiety from the cytokinin nucleotide precursor by phosphoribohydrolase, an enzyme encoded by a gene named LONELY GUY (LOG). This reaction accounts for most of the cytokinin supply needed for regulating plant growth and development. In contrast, the LOG-independent pathway, in which dephosphorylation and deribosylation sequentially occur, is also thought to play a role in cytokinin biosynthesis, but the gene entity and physiological contribution have been elusive.

View Article and Find Full Text PDF

Drought severely damages crop production, even under conditions so mild that the leaves show no signs of wilting. However, it is unclear how field-grown plants respond to mild drought. Here, we show through six years of field trials that ridges are a useful experimental tool to mimic mild drought stress in the field.

View Article and Find Full Text PDF

Cytokinins (CKs), a class of phytohormones with vital roles in growth and development, occur naturally with various side-chain structures, including N6-(Δ2-isopentenyl)adenine-, cis-zeatin- and trans-zeatin (tZ)-types. Recent studies in the model dicot plant Arabidopsis (Arabidopsis thaliana) have demonstrated that tZ-type CKs are biosynthesized via cytochrome P450 monooxygenase (P450) CYP735A and have a specific function in shoot growth promotion. Although the function of some of these CKs has been demonstrated in a few dicotyledonous plant species, the importance of these variations and their biosynthetic mechanism and function in monocots and in plants with distinctive side-chain profiles other than Arabidopsis, such as rice (Oryza sativa), remain elusive.

View Article and Find Full Text PDF

Plants retain the ability to generate a pluripotent tissue called callus by dedifferentiating somatic cells. A pluripotent callus can also be artificially induced by culturing explants with hormone mixtures of auxin and cytokinin, and an entire body can then be regenerated from the callus. Here we identified a pluripotency-inducing small compound, PLU, that induces the formation of callus with tissue regeneration potency without the external application of either auxin or cytokinin.

View Article and Find Full Text PDF

Functional relationships between endogenous levels of plant hormones in the growth and development of shoots in etiolated Alaska pea and etiolated Golden Cross Bantam maize seedlings under different gravities were investigated in the "Auxin Transport" experiment aboard the International Space Station (ISS). Comprehensive analyses of 31 species of plant hormones of pea and maize seedlings grown under microgravity (μg) in space and 1 g conditions were conducted. Principal component analysis (PCA) and a multiple regression analysis with the dataset from the plant hormone analysis of the etiolated pea seedlings grown under μg and 1 g conditions in the presence and absence of 2,3,5-triiodobenzoic acid (TIBA) revealed endogenous levels of auxin correlated positively with bending and length of epicotyls.

View Article and Find Full Text PDF

In grafted plants, inorganic ions and plant hormones in the xylem exudate transported from the rootstock to the scion directly or indirectly affect the scion, thereby improving the traits. Therefore, the concentration of these components in the xylem exudate of grafted plants may be an indicator for rootstock selection. On the other hand, few reports have presented a comprehensive analysis of substances transferred from the rootstock to the scion in plants grafted onto different rootstocks, primarily commercial cultivars.

View Article and Find Full Text PDF

The Arabidopsis ABC transporter ABCG11 transports lipidic precursors of surface coating polymers at the plasma membrane of epidermal cells. Mutants in exhibit severe developmental defects, suggesting that ABCG11 might also participate in phytohormone-mediated development. Here, we report that ABCG11 is involved in cytokinin-mediated development.

View Article and Find Full Text PDF

Parthenocarpy, the pollination-independent fruit set, can raise the productivity of the fruit set even under adverse factors during the reproductive phase. The application of plant hormones stimulates parthenocarpy, but artificial hormones incur extra financial and labour costs to farmers and can induce the formation of deformed fruit. This study examines the performance of parthenocarpic mutants having no transcription factors of and and that do not have the protein-coding gene, , in tomato (cv.

View Article and Find Full Text PDF

Ammonium is combined with glutamate to form glutamine. This reaction is catalyzed by glutamine synthetase (GS or GLN). Plants harbor several isoforms of cytosolic GS (GS1).

View Article and Find Full Text PDF

Oryza longistaminata, a wild rice, vegetatively reproduces and forms a networked clonal colony consisting of ramets connected by rhizomes. Although water, nutrients, and other molecules can be transferred between ramets via the rhizomes, inter-ramet communication in response to spatially heterogeneous nitrogen availability is not well understood. We studied the response of ramet pairs to heterogeneous nitrogen availability using a split hydroponic system that allowed each ramet root to be exposed to different conditions.

View Article and Find Full Text PDF

Previous studies suggest that root-derived cytokinins (CKs) contribute to shoot growth via long-distance transport; therefore, we hypothesized that an increase in root-derived CKs enhances shoot growth. To verify this, we grafted Arabidopsis Col-0 (wild type, WT) scion onto rootstock originated from WT or a double-knockout mutant of CK receptors Arabidopsis histidine kinase 2 (AHK2) and AHK3 (ahk2-5 ahk3-7; ahk23) because this mutant overaccumulates CKs in the body probably due to feedback homeostasis regulation. The grafted plants (scion/rootstock: WT/WT and WT/ahk23) were grown in vermiculite pots or solid media for vegetative growth and biochemical analysis.

View Article and Find Full Text PDF